

Identification of catalytic residues in protein structures using a novel feature that integrates the micro-environment and geometrical location properties of residues

Lei Han¹, Jiangning Song^{2,3}, Ming S. Liu^{4,*} and Ziding Zhang^{1,*}

¹State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China ²National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China ³Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Melbourne, VIC 3800, Australia ⁴CSIRO - Mathematics, Informatics & Statistics, Private Bag 33, Clayton South 3169, Australia

Introduction

Enzymes help to fulfill diverse biochemical functions and play critical roles in almost all cellular processes. Although different mechanisms of some enzymes have been characterized, there is a difficulty in rationalizing the available enzyme sequences/structures with their annotated functions. Identification of catalytic residues (CRs) is the first and important step to characterize the catalytic mechanism and function of an enzyme. Since experimental determination of CRs on large-scale proteome data is still a costly and daunting task, computational methods to predict CRs from enzyme sequences/structures are playing an increasingly important role in complementing the experimental identification. Though there are lots of features for predicting CRs, advancing novel features does not only increase the prediction accuracy but also deepen our understanding of catalytic mechanisms.

In this work, we developed a novel structural feature called MEDscore to determine the CRs. Firstly, a residue's micro-environment (ME) was converted into a series of spatially neighboring residue pairs and a ME-based score (i.e. MEscore) was proposed to quantify a residue's ME information. Secondly, a parameter named Dscore was set up to measure a residue's global positional information. Finally, MEDscore was defined from an effective nonlinear integration of MEscore and Dscore.

Materials and Methods

Benchmark Enzyme Dataset

The enzyme dataset used in this study was based on the Catalytic Site Atlas (CSA)

The weight coefficients of spatially neighboring residue pairs in the MEs of CRs

database (version 2.2.12). After filtering homology sequences and based on other criteria, 223 enzyme structure domains were retained in our final dataset. These structure domains were downloaded from ASTRAL.

Definition and Calculation of Dscore

Geometrical center of one protein structure:

$$(c_x, c_y, c_z) = (\frac{\sum_{i=1}^{N} x_i}{N}, \frac{\sum_{i=1}^{N} y_i}{N}, \frac{\sum_{i=1}^{N} z_i}{N})$$

The distance between a residue i and the center of the structure (i.e. Dscore_i)

$$Dscore_{i} = \sqrt{(c_{x} - x_{i})^{2} + (c_{y} - x_{i})^{2} + (c_{z} - x_{i})^{2}}$$

Definition and Calculation of MEDscore

MEDscore is a feature which integrates the micro-environment (ME) and geometrical properties of amino acid residues. The flowchart of calculating MEDscore is shown at right.

The ME of a residue (MEscore) is represented as a series of spatially neighboring residue pairs in the local of the query residue. The details of calculation MEDscore is similar as the process of measuring MEDscore.

As shown in the left figure, different residue pairs exhibit the scaled propensities in the ME of catalytic residues, providing important insights into the molecular mechanism of enzymatic catalysis.

Web server for CRs prediction (http://protein.cau.edu.cn/mepi/)

Results and Discussion

Propensities of residues in the ME surrounding the CRs

Reutoff (4Å) Routoff (6Å Rcutoff (8Å 0.09 Rcutoff (10Å 0.06 ropensity 0.03 D Е F G С н Κ L Μ N P Q R S V т W Y

Propensities of Catalytic Residues and Their Spatially Neighboring Residues

· · ·	ile to Submit:	浏览	···· *		
	ob Title:		*		
, i	lser E-Mail:			*	
	Reset	ocess File>>			
	ob ID:		*		
	ob ID:		*		
	Reset	Jery>>			
	fine of AAEEDI	minner site:			

edgement:

We sincerely thank Prof. Tal Pupko for providing Rate4Site program to calculate conservation score of each residu

Copyright © 2011 Ziding Zhang's Lab, China Agricultural University

					Residue Inde	x			
The	Results of	CMEDsco	re:						
				CMEDs	core of eac	h residue			
CMEDscore	B B B C C C D D D D D D D D D D D D D	B28T	B42V		PR B84G Residue Inde	B90P B	112E B12		
					rtearage inge	A			
	The cutoff	of each sco	re is calculte	d at false pos	sitive rate < 5	% based on the	dataset we u	sed.	
	The cutoff	of each sco	ore is calculte	d at false pos	sitive rate < 19	% based on the	dataset we u	sed.	
ree	idues or	edicted	as catal	utic residu	ues by es	ch feature			
res	sidues pr	redicted	as cataly	ytic resid	ues by ea	ch feature	Pasidua	CHEDROOM	
res	Reisue	Dscore	as cataly Residue	MEscore	Residue	MEDscore	Residue	CMEDscore	
res	Reisue B50A B51L	Dscore 0.9647 1.0000	as cataly Residue B91H	MEscore 1.0000	Residue B47E B48R	MEDscore 1.0000 0.9335	Residue B26E B47E	CMEDscore 0.8783 0.9207	
res	Reisue B50A B51L	Dscore 0.9647 1.0000	as cataly Residue B91H	vtic reside	Residue B47E B48R	MEDscore 1.0000 0.9335	Residue B26E B47E B48R	CMEDscore 0.8783 0.9207 0.9800	
res	Reisue B50A B51L	Dscore 0.9647 1.0000	as cataly Residue B91H	MEscore 1.0000	Residue B47E B48R	MEDscore 1.0000 0.9335	Residue B26E B47E B48R B91H	CMEDscore 0.8783 0.9207 0.9800 0.8586	
	E: bidues pr	each score	as cataly Residue B91H e is calculted as cataly	d at false pos	Residue B47E B48R sitive rate < 1 ues by ea	MEDscore 1.0000 0.9335	Residue B26E B47E B48R B91H	CMEDscore 0.8783 0.9207 0.9800 0.8586 a used.	
NOTI TI	Reisue B50A B51L E: The cutoff of Sidues pr Reisue	each score	as cataly Residue B91H e is calculted as cataly Residue	d at false pos	Residue B47E B48R sitive rate < 1 ues by ea	MEDscore 10000 0 9335 % based on the ach feature MEDscore	Residue B26E B47E B48R B91H e dataset we	CMEDscore 0.8783 0.9207 0.9800 0.8586 a used. CMEDscore	
NOTI TI	E: he cutoff of sidues pr Reisue B37E	each score each score redicted	as cataly Residue B91H e is calculted as cataly Residue B26E	d at false pos tic reside	Residue B47E B48R sitive rate < 1 ues by ea Residue B26E	MEDscore 1.0000 0.9335 % based on the ach feature 0.6746	Residue B45E B45E B45E B91H e dataset w Residue B41C	CMEDscore 0.8783 0.9207 0.9800 0.8596 a used. CMEDscore 0.7560	
NOTI TI	E: he cutoff of sidues pr B47E B48R	each score o 9647 1 0000 each score redicted Dscore o 9141 0 9266	as cataly Residue B91H e is calculted as cataly Residue B26E B34H	d at false pos ytic reside to reside MEscore 0.7722 0.7202	Residue B47E B48R sitive rate < 1 ues by ea Residue B26E B44C	MEDscore 1.0000 0.9335 % based on th ach feature MEDscore 0.6746 0.4611	Residue B26E B47E B48R B91H e dataset we Residue B41C B44C	CMEDscore 0.8783 0.9207 0.9800 0.8586 a used. CMEDscore 0.7560 0.8315	
NOT T	E: Reisue BSOA BSOA BSOA BSOA BSOA BSOA BSOA BSOA	each score 0.9647 1.0000 each score redicted Dscore 0.9141 0.9266 0.9036	as cataly Residue B91H e is calculted as cataly Residue B34H B44C	d at false pos ytic reside ytic reside MEscore 0.7722 0.5488	Residue 847E 848R sitive rate < 1 ues by ea Residue 826E 844C 844C	MEDscore 1.0000 0.9335 % based on the hch feature MEDscore 0.6746 0.4511 0.46511	Residue B26E B47E B91H e dataset we Residue B41C B44C B46C	CMEDscore 0.8783 0.9207 0.9800 0.8596 a used. CMEDscore 0.7560 0.8315 0.8352	
NOTI Ti	Reisue BSOA BS1L E: The cutoff of sidues pr Reisue B47E B48R B49V B52F	each score 0 9647 1 0000 each score edicted Dscore 0 9141 0 9266 0 9036 0 8522	as cataly Residue B91H e is calculted as cataly Residue B26E B34H B44C B47E	ytic residu MEscore 1.0000 d at false pos ytic residu MEscore 0.7722 0.722 0.5488 0.8090	Residue 847E 848R attive rate < 1 ues by ea Residue 826E 844C 848C 863R	MEDscore 1.0000 0.9335 % based on the 1.0000 0.6746 0.4611 0.4006 0.6313	Residue B46E B47E B48R B91H e dataset w Residue B41C B44C B84G B84G	CMEDscore 0.8783 0.9207 0.9800 0.8596 e used. CMEDscore 0.7560 0.8315 0.8315 0.8322 0.7311	
NOTI T	Reisue BSOA BSIA BSIA BSIA BSIA BSIA Reisue BATE BATE BATE BSIAG BSIAG	each score 0.9647 1.0000 each score 0.9141 0.9266 0.9036 0.8522	as cataly Residue B91H e is calculted as cataly Residue B34H B44C B44C B44F B48F	ytic residu MEscore 1.0000 d at false pos ytic residu MEscore 0.7722 0.5465 0.6990 0.7935	Residue B47E B46R itive rate < 1 ues by ea Residue B26E B46Y B63R B01H	MEDscore 1.0000 0.9335 % based on the och feature MEDscore 0.6746 0.4611 0.4008 0.6813 0.6211	Residue B47E B47E B48R B91H e dataset w Residue B41C B41C B46Y B64G B150F	CMEDscore 0.8783 0.9207 0.9000 0.8596 e used. CMEDscore 0.7560 0.8315 0.8352 0.7311 0.7445	
NOTI TI	Relsue B50A B51L E: the cutoff of sidues pr Relsue B47E B49R B49R B52F B64G	edicted Dscore 0.9647 1.0000 each score redicted Dscore 0.9141 0.9266 0.9036 0.8522 0.8694	as cataly Residue B91H e is calculted as cataly Residue B26E B34H B44C B44C B44F B44R B44R B43R	ytic residu MEscore 1 0000 d at false pos ytic residu 0.7722 0.7426 0.8090 0.7936 0.6295	Residue B47E B46R ititive rate < 1 ues by ea B46R B46R B44C B44C B44C B44C B44C B44C B44C B44	MEDscore 1.0000 0.9335 % based on th acch feature MEDscore 0.6746 0.4611 0.4808 0.6211 0.3930	Residue B47E B47E B48R B91H e dataset we Residue B41C B44C B44C B44G B44G B150F	CMEDscore 0.8783 0.9207 0.9800 0.8586 e used. CMEDscore 0.7560 0.8315 0.8315 0.8315 0.8315 0.7495	

Acknowledgements

The authors thank Dr. Zhi-Ping Feng at the Walter and Eliza Hall Institute of Medical Research (WEHI), Australia for helpful discussions. We also thank Prof. Tal Pupko (Tel Aviv University) for providing the Rate4Site program. This work was supported by grants from the National Key Basic Research Program of China (2009CB918802 and 2012CB1141004) and the National Natural Science Foundation of China (30700137).

Ziding Zhang's Lab of Protein Bioinformatics http://protein.cau.edu.cn

Lei HAN's email : hanlei_45@126.com