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Abstract 
Toll-like receptors (TLRs) belong to the Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) 

superfamily, which is defined by a common cytoplasmic Toll/interleukin-1 receptor (TIR) domain. 

These receptors recognize pathogen-associated molecular patterns and initiate an intracellular 

kinase cascade to cause an immediate defensive response. SIGIRR (single immunoglobulin 

interleukin-1 receptor-related molecule), another member of the TLR/IL-1R superfamily, acts as a 

negative regulator of the MyD88-dependent TLR signaling. It attenuates the recruitment of 

MyD88 adaptors to the receptors with its intracellular TIR domain. Thus, SIGIRR reveals 

potential significance in the therapy of autoimmune diseases. However, the mechanism how 

SIGIRR structurally interacts with TLRs and adaptor molecules remains unclear. Here, we 

developed three-dimensional structures for the TIR domains of TLR4, MyD88 and SIGIRR based 

on computational modeling. Through protein-protein docking analysis, we suggest models of 

essential complexes involved in the TLR4 signaling and the SIGIRR inhibiting processes. SIGIRR 

may exert its inhibitory effect through blocking the molecular interface of TLR4-TLR4 and 

MyD88-MyD88 dimers mainly via its BB-loop region. 

1. Introduction 
The Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) superfamily plays an important role in 

differentially recognizing pathogen products and mediating immune responses. All members of 

this superfamily possess a conserved cytoplasmic Toll/interleukin-1 receptor (TIR) domain [1], 

which is connected to an ectodomain through a single transmembrane stretch. The TLR/IL-1R 

superfamily can be divided into two main groups based on ectodomains: immunoglobulin (Ig) 

domain-containing receptors and Toll-like receptors (TLRs) [2]. 

To date, thirteen TLRs have been identified in mammals. Their ectodomains consist of 16 to 28 
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leucine-rich repeats (LRRs). These LRRs provide a variety of structural frameworks for binding of 

protein and non-protein ligands including lipopolysaccharide (LPS), lipopeptide, 

cytosine-phosphate-guanine (CpG) DNA, flagellin, imidazoquinoline and double/single stranded 

RNA [3]. TLRs are capable of recognizing ligands in a dimer form [4-6]. Upon receptor activation, 

an intracellular TIR signaling complex is formed between the receptor and downstream adaptor 

TIR domains [7]. MyD88 (Myeloid differentiation primary response protein 88) is the first 

characterized intracellular adaptor molecule among all known adaptors in the TLR signaling. It 

consists of an N-terminal death domain (DD) separated from its C-terminal TIR domain by a 

linker sequence. MyD88 also forms dimer through DD-DD and TIR-TIR domain interactions 

when recruited to the receptor complex [8]. Further, MyD88 can recruit IRAK (IL-1RI-associated 

protein kinases) through its DD to continue signaling and, finally, to induce the nuclear factor-κB 

(NF-κB) that leads to the expression of type I interferons. Although the MyD88-dependent 

pathway is common to most TLRs, TLR3 exclusively uses TRIF (TIR-domain-containing 

adapter-inducing interferon-β) for signals (MyD88-independent) while the TLR4 can use both 

pathways to signal. 

SIGIRR (single immunoglobulin interleukin-1 receptor-related molecule), also known as TIR8 

(Toll/IL-1R 8), was initially identified as an Ig domain-containing receptor of the TLR/IL-1R 

superfamily in 1998 by Thomassen et al [9]. Both the extracellular and intracellular domains of 

SIGIRR differ from those of other Ig domain-containing receptors. Its single extracellular Ig 

domain does not support ligand binding. Its intracellular TIR domain cannot activate NF-κB 

because it lacks two critical amino acids, Ser447 and Tyr536. Moreover, the TIR domain of 

SIGIRR extends that of the typical TLR/IL-1R superfamily member by more than 73 amino acids 

at the C-terminal (C-tail) [9]. SIGIRR rather acts as an endogenous inhibitor for 

MyD88-dependent TLR and IL-1R signaling because over expression of SIGIRR in Jurkat or 

HepG2 cells substantially reduced LPS, CpG DNA or IL-1-induced activation of NF-κB [10-12]. 

In this regard, SIGIRR may prevent some autoimmune diseases such as systemic lupus 

erythematosus caused by TLR-mediated induction of type I interferons [13]. Previous mutagenesis 

investigated three deletion mutants of SIGIRR [12]: ΔN (lacking the extracellular Ig domain), 

ΔTIR (lacking the intracellular TIR domain) and ΔC (lacking the C-tail of the TIR domain with 

deletion of residues 313–410). The results showed that only the TIR domain (excluding the C-tail 

part) is necessary for SIGIRR to inhibit TLR4 signaling [12]. However, detailed structural 

interaction behaviors of SIGIRR are unknown. 

The structures of TIR domains from human TLR1, 2, 10 and IL-1RAPL have been solved so far 

by X-ray crystallography [14-16]. Thereof, the TLR1 and 2 modules behave as monomers in 

solution and the packing of the molecules in the crystal lattice did not suggest a likely arrangement 
2 

 



for a functional dimer. In contrast, the TLR10 and IL-1RAPL TIR domains were present as 

homodimers. Although they demonstrate different dimer conformations, a highly conserved 

BB-loop region plays a crucial role in both dimer interfaces. In light of these, we have built 

three-dimensional structures for TIR domains of TLR4, MyD88 and SIGIRR by homology 

modeling and protein threading to elucidate the mechanism of SIGIRR inhibiting the 

MyD88-dependent TLR4 signals. Models of essential molecular complexes involved in the TLR4 

signaling and the SIGIRR inhibiting processes are proposed based on results of protein-protein 

docking studies. 

2. Methods 
2.1 Templates identification and sequence alignments 
Amino acid sequences of the target proteins, human TLR4 (GenBank Accession No. O00206), 

MyD88 (AAC50954) and SIGIRR (CAG33619) were extracted from the NCBI protein database 

[17]. TIR domain structures of TLR4, MyD88, and SIGIRR (Tyr165-Pro308, without the C-tail) 

were constructued by homology modeling. Due to the high homology of the target proteins, four 

common templates were obtained via BLAST search against the Protein Data Bank (PDB) [18]. 

They were TLR1 (PDB code: 1FYV), TLR2 (1FYW), TLR10 (2J67), and IL-1RAPL (1T3G). 

Multiple sequence alignment of each target with the templates were generated using MUSCLE [19] 

and analyzed using Jalview [20]. Since the secondary structure of the TIR domain is composed of  

 

 TLR1 TLR2 TLR10 IL-1RAPL Avg 
TLR4 53.4 57.8 51.4 44.2 51.7 
MyD88 44.5 45.3 40.6 47.4 44.5 
SIGIRR 41.8 42.3 37.7 49.0 42.7 

Table 1: Sequence similarities (%) between targets and templates. 

well organized alternative β-sheet and α-helix, we adjusted the alignments manually according to 

the secondary structure information to improve the alignment quality. The secondary structures of 

each target were predicted by PSIPRED [21]. In addition, the C-terminal tail of the TIR domain, 

which is unique to SIGIRR, has no structure-known homologue to serve as template. In this case 

we employed the protein threading method THREADER 3.5 [22] to determine an acceptable 

template structure. The selected template was N-terminal domain of N-ethylmaleimide sensitive 

factor (NSF-N) (PDB code: 1QCS). 

2.2 Model construction and validation 
The initial three-dimensional coordinates of the models were generated by the fully automated 

program MODELLER 9v3 [23]. The input files for each model were a 5-line multiple alignment 
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file (one target and four templates) and coordinate files of the templates. During the modeling, gap 

regions in the alignment constituted loop structures in the model, which impeded the model 

accuracy. ModLoop [24] was used to modify such loop regions. Finally, we used the model quality 

assessment programs, ProQ [25], ModFOLD [26] and MetaMQAP [27] to evaluate the output 

candidate models and select the most reliable one. 

2.3 Model docking 
Pairwise model docking included five complexes of TIR domains: TLR4-TLR4, MyD88-MyD88, 

TLR4 dimer-MyD88 dimer (tetramer), TLR4-SIGIRR and MyD88-SIGIRR. Protein-protein 

docking programs GRAMM-X [28] and ZDOCK [29] were used to predict the interactions 

between these complexes. Both programs can return 10 most probable predictions which are 

selected from thousands of candidates based on geometry, hydrophobicity and electrostatic 

complementarity of the molecule surface. We subsequently chose the most reasonable solution 

from these outputs by considering further qualifications. These qualifications include residue 

conservation of the interaction sites, and knowledge from published articles [6, 15, 30, 31]. 

 

 TLR4 MyD88 SIGIRR C-tail 
ProQ_LG/MS 4.764/0.705 3.966/0.628 3.783/0.438 2.018/0.300 
ModFOLD_Q/P 0.6177/0.022 0.5749/0.027 0.7589/0.010 0.7731/0.009 
MetaMQAP_GDT/RMSD 76.923/2.123 Å 73.188/2.202 Å 65.068/2.737 Å 52.083/3.023 Å

Table 2: Model evaluation. All these displayed scores indicate that the models are reliable in 

terms of overall packing. ProQ_LG: >1.5 fairly good; >2.5 very good; >4 extremely good. 

ProQ_MS: >0.l fairly good; >0.5 very good; >0.8 extremely good. PROCHECK: percentage of 

residues in most favoured regions and additional allowed regions. ModFOLD_Q: >0.5 medium 

confidence; >0.75 high confidence. ModFOLD_P: <0.05 medium confidence; <0.01 high 

confidence. MetaMQAP_GDT/RMSD: an ideal model has a GDT score over 59 and a RMSD 

around 2.0 Å. 

3. Results 
3.1 Molecular modeling of TLR4, MyD88 and SIGIRR TIR domains 
In the secondary structure aided alignments for the modeling, the average target-template 

sequence similarity of TLR4, MyD88 and SIGIRR is 51.7%, 44.5% and 42.7%, respectively 

(detailed in Table 1). The resulting structures exhibit a typical TIR domain conformation where 

five central parallel β-sheets (βA-βE) are surrounded by a total of five α-helixes (αA-αE) on both 

sides (Figure 1A). Besides, the structure of NSF-N was identified as a template for SIGIRR’s 

C-tail through protein threading. The C-tail contains four parallel β-sheets with an α-helix and 
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some loop structures on the one side, whereas the other side points to SIGIRR’s TIR (Figure 1A).  

Figure 1: Three-dimensional structures and conserved regions of TIR domains of TLR4, MyD88 

and SIGIRR. (A) The BB-loop and αE regions are highlighted in orange and green respectively. 

(B) Multiple sequence alignment of different TIRs indicates seven conserved boxes. (C) Surface 

charge distribution (APBS electrostatics) of BB-loop and αE with red indicating areas of negative 

charge and blue indicating positive charge. 
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These results suggest that the TIR domain and the C-tail of SIGIRR are not an integrative 

structure, but two interconnected individual modules. Evaluation of the models involved analysis 

of geometry, stereochemistry and energy distributions of the molecules. The evaluation results 

(Table 2) are indicative of a good quality of all models. 

Multiple sequence alignment of TIR domains from different molecules detected seven conserved 

boxes in the TIR domain (Figure 1B). Our models show that they correspond to β-sheet A (βA), 

β-sheet B (βB), BB-loop, β-sheet C (βC), β-sheet D (βD), β-sheet E (βE) and α-helix E (αE), 

respectively. Functional significance can be usually observed in conserved regions. Nevertheless, 

the five β-sheets (box 1, 2, 4-6) are embedded structures that form a hydrophobic core of the TIR 

domain and hence unable to interact with other molecules. Also, the αE (box 7) of SIGIRR is 

blocked, because it is linked to the C-tail. In this vein, the BB-loop (box 3) and αE of TLR4 and 

MyD88, along with the BB-loop of SIGIRR may be important to ensure binding specificity 

achieved by different combinations of TIRs during signaling  (Figure 1A). Figure 1C illustrates 

the electrostatic surface potential of these BB-loops and αEs. Accordingly, all BB-loops can be 

divided into two parts. The N-terminal (upper region of BB-loops in Figure 1C) is negatively 

charged, whereas the C-terminal (lower region of BB-loops in Figure 1C) is positively charged. 

The αEs, by contrast, are predominantly positive. 

3.2 Pairwise docking of TLR4, MyD88 and SIGIRR TIR domains 
As noted above, TLR4, MyD88 and SIGIRR are able to interact heterotypically with each other. 

To elucidate how SIGIRR disturbs the MyD88-dependent TLR4 signals, it is indispensable to 

understand the interaction mode of the signaling complex of TLR4 and MyD88 without the 

presence of SIGIRR. As a result, we performed protein docking analysis for the five TIR 

complexes as follows. An optimal docking solution was chosen for each complex from large 

numbers of candidates (detailed in Methods). Molecular surface charge analysis indicates that all 

the selected models exhibit good electrostatic complementarity (data not shown). 

3.2.1 TLR4-TLR4 
The signaling mechanism of all TLRs is likely to involve receptor dimerization. This can be 

achieved in various ways by different receptors [32]. TLR4’s TIR domain reveals an axially 

symmetric dimer with the BB-loop (involved redsidues: Pro714-Ala717) of one monomer 

protruding into the groove formed by the αC (Cys747-Ile748) and DD-loop (Gln782) of the other 

(Figure 2A). Simultaneously, the αB (Ala719) of each monomer interacts tightly with each other 

in the middle of both BB-loop connections. 
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Figure 2: Essential complexes involved in the TLR4 signaling and the SIGIRR inhibiting processes by 

protein docking. Interacting regions of BB-loop and αE are labeled in orange and green respectively. Other 

interacting regions are labeled in yellow. All interacting residues (orange/green/yellow) are extra 

represented using CPK (Corey, Pauling & Kultun) convention. (A) TLR4-TLR4 dimer. (B) MyD88-MyD88 

dimer. (C) TLR4 dimer-MyD88 dimer tetramer. (D) TLR4-SIGIRR dimer. (E) MyD88-SIGIRR dimer. 

3.2.2 MyD88-MyD88 
MyD88 forms dimer when incorporated into a receptor complex [8]. The BB-loops 

(Asp195-Cys203) from both monomers were docked together by an antiparallel packing (Figure 

2B). Under the BB-loop connection both αCs (Cys233-Lys238) are brought into contact. This 

model is also axially symmetirc. Our finding is consistent with Loiarro et al’s conclusion that a 

heptapeptide, which mimics the BB-loop of MyD88’s TIR domain, strongly interferes with 

dimerization of MyD88 [30]. 
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3.2.3 TLR4 dimer-MyD88 dimer 
Both dimers described above were assembled into a tetramer (Figure 2C). The TLR4 dimer 

provides a binding pocket adjacent to its interface. This pocket is constituted by the αC (Gln755) 

of a TLR4 monomer as well as the αB (Ala719-His724) and αC (Tyr751-Thr756) of the other 

monomer (TLR4*). The αE (Cys280-Arg288) of a MyD88 monomer just fills the pocket and 

makes interactions. This connection is further stabilized by three surrounding joints: MyD88’s 

DE-loop (Ile271) to TLR4’s CD-loop (Arg763-Ala764), MyD88’s EE-loop (Asp275-Thr277) to 

TLR4’s CD-loop (Thr756-Gln758), and MyD88’s αA (Gln181-Asn186) to TLR4*’s CD-loop 

(Trp757-Leu760). 

3.2.4 TLR4-SIGIRR 
As an inhibitor of  the TLR signaling, SIGIRR heterodimerizes with TLR4 [12]. Our docked 

model exhibits an extensive interface composed of three patches, which indicates a strong 

molecular affinity (Figure 2D). First, a consecutive stretch containing SIGIRR’s BB-loop 

(Asp200-Glu209) and αB (Pro210-Ser211) interacts with TLR4’s CD-loop (Trp757-Leu760). 

Second, SIGIRR’s αC (Arg235-Arg243) protrudes into the groove formed by TLR4’s αB 

(Ala719-His728) and αC (Tyr751-Gln755). Last,  SIGIRR’s αD (Pro268-Ala269) interacts with 

TLR4’s BB-loop (Val716-Ala717). Notably, the C-tail of SIGIRR is located on the opposite side 

of SIGIRR’s interacting surface. Therefore, it may not participate in the dimer interface. 

3.2.5 MyD88-SIGIRR 
SIGIRR interferes with the functional dimer conformation of MyD88 by heterodimerization with 

MyD88 [12]. Our docked model shows that the molecular interface between MyD88 and SIGIRR 

is quite large (Figure 2E). SIGIRR’s BB-loop (Asp201-Ala208) complements MyD88’s BB-loop 

(Asp195-Val204), by substituting the other BB-loop in the customary MyD88 homodimer (Section 

3.2.2). Furthermore, SIGIRR’s AA-loop (Ser172-Cys174) and αC (Arg235-Ala236) interacts with 

MyD88’s αC (Gln229-Thr237) under the BB-loops. Likewise, SIGIRR’s C-tail does not seem to 

play any role in this dimer. 

4. Discussion 
So far, the only crystallized dimer structure of TLR’s TIR domain is the TLR10 dimer [15], in 

which the BB-loop and αC of each monomer constitute the major part of the symmetric dimer 

interface. Miguel et al conceived of TLR4’s dimerization manner as identical to TLR10’s (no 

evidence given) [31]. However, we do not consider them to be necessarily identical, because the 

TIR domain inherently has diverse dimer conformations [15, 16, 33] and TLR4 has different 

ligand-binding and signaling mechanism compared with TLR10. Poltorak et al reported that a 
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single-point mutation (Pro712His) of the TIR domain of murine TLR4 abolished the TLR4 

response to LPS [34]. Our TLR4 dimer model supports Poltorak et al’s results. The corresponding 

residue Pro714 is located at the very tip of the BB-loop and interacts tightly with Gln782 of the 

other monomer. 

Triggering of the TLR causes the adaptor protein MyD88 to be recruited to the receptor complex, 

which in turn promotes association with kinases IRAK4/1. Previously, Dunne et al modeled the 

TLR4-MyD88 heterodimer using TLR4 and MyD88 monomers [35]. This may, however, lead to 

disregard of important contributions made by other participators during the molecular interactions. 

The docking of TLR4-dimer and MyD88-dimer allows significant advances made in the structural 

interpretation over the previous work. The tetramer revealed in our study demonstrates that the 

stimulus induced dimerization of TIR domains creates a new molecular surface for the recruitment 

of signaling adaptor proteins. 

All results from pairwise docking studies here can be assembled to derive a working hypothesis 

for the TLR4 signaling transduction and SIGIRR inhibition mode (Figure 3). Receptor activation 

would trigger the formation of TLR4 TIR dimers recruiting MyD88 TIR dimers and forming a 

signaling tetramer (middle complex in Figure 3). Model predictions including SIGIRR reveal that 

SIGIRR binds to TLR4 by occupying TLR4’s interacting sites, which should interrupt TLR4 

 
Figure 3: Model of SIGIRR inhibiting the TLR4 signaling. 

homodimer formation (left complex in Figure 3). On the other hand, the MyD88-SIGIRR dimer 

shows a resemblance to the MyD88 homodimer. That is, SIGIRR replaces a MyD88 monomer, 

interrupting MyD88 homodimer formation (right complex Figure 3). In both cases the BB-loop of 

SIGIRR plays a key role in binding. Remarkably, TLR4 and MyD88 possess a more extensive 
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molecular interface with SIGIRR (heterodimer) than with themselves (homodimer). This 

observation highlights the strong molecular affinity of SIGIRR as an inhibitor. In addition, 

SIGIRR’s unique C-tail is located distantly from the active BB-loop according to our model, 

consistent with the observation that this tail is not required for SIGIRR’s inhibitory effect on TLR 

signaling [12]. 

During recent years SIGIRR has received a tremendous research interest due to its therapeutic 

potential in autoimmune diseases. Although the significance of SIGIRR has been widely 

acknowledged, its inhibition mechanism remains unclear owing to the lack of structural 

information. This work depicts a residue-detailed structural framework of SIGIRR inhibiting the 

TLR4 signaling pathway using computational approaches. These results would facilitate efforts to 

design further site-directed mutagenesis to learn more details about the regulatory role of SIGIRR 

in inflammatory and innate immune responses. 
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Abstract 
More and more often research focus in the fields of biology and medicine moves from the 

investigation of single phenomena to the analysis of complex cause and effect relations. The 

clarification of complicated relations requires the consideration of different domains, for instance, 

gene expression, protein, and metabolite data. Furthermore, it is often sensible not to analyze 

measured data in isolation, but to consider the context of relevant biological networks. In this 

paper newly developed functionalities of the VANTED system are presented. They allow users 

from medicine and biology to interactively structure extensive experiment data, to filter, to 

evaluate, and to visualize the data and the analysis results in context of biological networks and  

classification hierarchies. 

1. Introduction 
The methodology of biochemical research has strongly changed during the last years. 

Nowadays large amounts of experimental data is produced by massive-parallel analysis 

technologies, for instance by automated enzyme-assays, metabolite and transcriptprofiling. Using 

the right supporting software, the resulting data base provides a comprehensive view on the 

biochemistry of an organism. The clarification of complicated connections in organisms generally 

requires the consideration of different domains. To handle this problem, instead of analysing the 

data in isolation, it is worth to consider the context of relevant biological networks. Available 

software systems for this task (see [SH07]) are tuned besides a few exceptions to single data 

domains and/or are firmly coupled to certain databases. In this paper newly developed 

functionalities of the VANTED system [JKS06] are presented. They allow users from medicine 

and biology to interactively work with extensive experiment data, to filter, to statistically evaluate, 

and to visualize the analysis results directly in context of relevant biological networks and 

classification hierarchies. 

2. Methods 
For the analysis of experimental data integrated views of the measured values and relevant 
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background information should be generated. This approach corresponds with the idea of system 

biology – instead of considering single parts, the analysis covers the overall system with all 

interactions to better understand biological phenomena. In order to fulfil the goal of creating a 

software system which supports users in the analysis, three aspects are of importance for the 

design of the VANTED software: 1) data models for experiment data and biological networks, 2) 

the process of data mapping, by means of connecting experiment data and networks, 3) the 

analysis and visualisation of the network-integrated data sets. These three points are described in 

the following. 

1) Data models for experiment data and biological networks By investigation of common 

experiment designs the following crucial experimental factors have been identified: 

information about time series, replicates, environmental conditions, treatments and genetic 

lines. A data model which is able to handle experiment data, partitioned by the 

mentioned experiment factors, has been developed and is shown in Figure 1. To simplify 

the design and implementation, the model does not store information about the experiment 

procedures, but instead focuses on information required for experiment data mapping, 

visualization and analysis. 

 

Figure 1: Data model (UML class diagram). 

In contrast to some other systems VANTED supports dynamic networks. Networks can be loaded 

into the system from databases (e. g. KEGG) or from files (e. g. GML, SBML, Pajek .net format). 

In addition, it is possible to construct or edit networks manually with integrated editor functions, 

thus networks can be easily extended if more substances were measured. 

2) Data mapping For the integration of measurement data into relevant networks a data mapping 

is carried out. If measurement data and networks share common identifiers, the data mapping 

procedure is carried out automatically. In addition, synonyms are considered for network elements 

as well as for experiment data. Information about synonyms and alternative identifiers is taken 

automatically from integrated databases (Expasy Enzyme [Bai00], KEGG Compound and KEGG 

BRITE [KAG+08]) or can be provided by the user. Optionally, data sets which could not be 

mapped on the basis of substance names and synonyms are mapped to newly generated network  
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nodes. In this manner new substances can be easily integrated into an existing network. 

3) Histogram functions for classification hierarchies and network-integrated data The basis 

of the histogram function are classification hierarchies modelled as graphs (e.g. Gene Ontology or 

KEGG BRITE) consisting of classification nodes CN and leafnodes representing genes LN. By 

means of a data analysis function LN of the hierarchy, containing the experiment data are 

partitioned into several groups depending on the assigned data (e. g. up- or down-regulated gene 

nodes). In order to get an overview about the classification-specific group assignment within CN, 

the frequencies of LN groupassignments are determined and a corresponding data set is 

constructed for every non-leaf CN hierarchy node. This data set is visualized by node-embedded 

bar- or pie-charts. The most interesting CN nodes are nodes which show an uncommon pattern in 

the frequency of assigned groups. The significance of a observed frequency distribution in 

comparison to the overall proportions can be analyzed using Fisher’s exact test. The result of this 

statistical test is a probability value p. If p lies under a user-defined threshold (e. g. p _ 0:05), the 

observed frequency distribution is regarded as non-random and therefore as significant. The 

visualization may then be simplified by removing all nodes from the hierarchy from which there is  

no significant node reachable, see Figure 2 (top). 

VANTED also supports the visualization of several values connected to a single network element. 

While other systems often support only a simple colour code for the representation 

of a single measured value or the ratio of two values, the integration of diagrams into the network 

representation enables the visualization of more complex structured data sets. Another advantage 

in using line- or bar-charts is that such kinds of diagrams are widely used in other areas and thus 3  
are easy to understand. 

3. Application example 
Certain human cell lines are used to investigate the development of cancer. For this application 

example gene expression data of a human cell line, affected by a specific type of carcinoma 

(human choriocarcinoma BeWo), is compared to a control line (human placenta). 

The data sets were downloaded from the KEGG EXPRESSION database [KAG+08]. In order to 

get a general overview about the differences of the lines, the gene expression data can be assigned 

with the VANTED system to the KEGG pathway hierarchy (using information from the KEGG 

BRITE system). In the present data set no additional annotation files need to be considered in 

order to generate a corresponding pathway hierarchy, because the data sets from the KEGG 

EXPRESSION database already use gene IDs, used also inside the KEGG pathway diagrams. For  

datasets from a different source additional annotation files may be needed. 
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At first a data mapping is carried out which generates for each gene of the data set a new node. 

After that, the automated workflow is started by using the menu command “Hierarchy/Analysis  

Pipeline”: 

1. Depending on the gene expression values, the available network nodes are categorized as  

down-, up- or not-regulated. A user-specified threshold is used during this procedure. 

2. Gene-nodes are related to the KEGG Pathway hierarchy which is constructed as classification 

tree. Each new node of the classification tree represents a pathway, a BRITE gene function or a 

(pathway) category. In the present data set 695 out of 836 gene nodes could be connected to at  

least one node of the classification hierarchy. 

3. Histograms are calculated. For each classification node the number of reachable nodes, 

belonging to a user-selected group as well as the number of remaining reachable gene-nodes is  

determined. In this example, user selected nodes are unregulated nodes. 

4. In step two of the pipeline 695 genes were assigned to 190 different pathways. Most of the 

pathways show a similar relative proportion of not-regulated to up- or downregulated genes. With 

the help of Fisher’s exact test those pathways can be identified, which show a non-random 

divergence to this pattern. By using p _ 0:05, 18 pathway nodes and KEGG BRITE category  

nodes remain in the visualization and can be easily investigated in more detail. 

5. The layout of the result network takes place. 

The result of the pipeline is shown in Figure 2 (top). The remaining pathway nodes contain in 

comparison to the complete data set either a comparatively high or low number of regulated genes. 

From the classification hierarchy KEGG pathways can be loaded and be investigated in detail. 

Figure 2 (bottom) shows the ECM-Receptor Interaction pathway which contains a comparatively 

large number of down-regulated genes and two upregulated genes. The corresponding distribution 

of the genes within the pathways can be easily recognized. 

4. Summary 
Because VANTED is implemented as an open source Java Web Start application it can be used on 

most computer platforms such as Linux, Windows and Mac OS X. The combination of functions 

for the network-integrated visualization and analysis of experiment data of different -omics areas, 

covering the access to KEGG pathways, Gene Ontology and the flexible visualization of time 

series data, including different conditions and replicates, make VANTED a valuable tool for  

research projects in biology, medicine and bioinformatics. 
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Figure 2: Top: KEGG BRITE pathway hierarchy (by means of Fisher’s exact test as significant recognized 

pathways). Note that only classification nodes CN are shown. Bottom: ECM-Receptor Interaction pathway 

with detailed representation of up- (red) and down-regulated (blue) genes. 
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1. Summary 
Cancer is a genetic disease related to DNA mutations in cells. The efforts to identify the key 

oncogenic mutations help us to understand the causes and progression of various cancers, and 

therefore open up more treatment options. Nowadays, the development of whole genome 

microarray expression profiling (GEP) allow us to monitor the expression value of every gene 

throughout the whole genome. However, there are still two major issues: first of all, most cancers 

are not due to one single gene mutation, but multiple ones typically involving in several cell 

signaling pathways related to the control of cell grown and cell fate; secondly, GEPs are 

measuring mRNA levels, which might not related to the levels of active form proteins, and hence  

might not related to downstream biological consequences. 

Gene Set Enrichment Analysis (GSEA [1]) and BinReg [2] are two recent developments in this 

area. GSEA predicts pathway activities between two conditions, for example, cancer tissues 

versus normal controls. But it is unable to predict pathway activities for each individual sample. 

BinReg can predict pathway activities for each individual one but it need a training GEP matrix  

for each pathway of interest as input, which makes it less applicable in real clinical settings. 

Here, we proposed two novel methods, namely iGSEA and iPASA, to predict the pathway 

activities of individual samples from microarray gene expression profiles, and overcome the above 

mentioned shortcomings of GSEA and BinReg. The results of our methods not only are  

compatible with BinReg but also correlate nicely with clinical experiments. 

2. Results 
Mouse Tumor Dataset 

Following BinReg [2], we test our methods on the same mouse tumor dataset (GEO number: 

GSE3158). The mouse tumor dataset contains 28 samples, including 7 normal wild-type reference 

samples (WT), 5 Mammary Tumor Virus (MMTV) samples affecting MYC gene (MMTVMYC), 
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3 MMTV samples affecting HRAS gene (MMTV-HRAS), 7 MMTV-HER2, and 6 samples with  

gene Rb deleted (Rb null). 

Figure 1(a) is the predicted results for 3 pathways (MYC, E2F3 and RAS) from BinReg [2]. For 

each pathway, the 28 samples are sorted from left to right according to the predicted pathway 

activities. It is clearly shown in the figure that the 5 MMTV-MYC samples are predicted to have 

high MYC pathway activities; the 6 Rb-null samples are predicted to have high E2F3 pathway 

activities; the 3 MMTV-HRAS samples are predicted to have mid to high RAS pathway activities. 

All of these fit the underlying biology very well. Figure 1(b) and Figure 1(c) show the results of 

our two methods, iGSEA and iPASA. As you can see, both our two methods produce compatible 

results with BinReg. The MMTV-MYC, MMTV-RAS and Rb-null samples are exclusively 

predicted to have high MYC, RAS and E2F3 activities, and iPASA achieves slightly better 

specificity than iGSEA. 

 

Figure 1: Predicted pathway activities in mutated mouse model 
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Multiple Myeloma Clinical Patient Sample Dataset  

We further study the MYC pathway activities in a cohort of 57 Multiple Myeloma (MM) patients. 

The MYC pathway is supposed to play a very important role in MM. However, unlike the 

previous mouse tumor datset, we don’t actually know the “true” MYC pathway activities of each 

individual MM patient sample. Hence, we conduct the MYC protein staining experiments for 

these 57 patients samples to get the “true” values that our computational predictions can compare 

with. Figure 2 shows the prediction results of our iGESA and iPASA algorithms. The 57 samples 

are sorted from left to right by their predicted MYC pathway activities, and the labels are the 

results of the MYC protein staining experiments. As reference, we also put “MYC expression” in 

the figure, which is the expression value of the MYC gene itself; and “core MYC genes”, which is  

the average expression of 6 core MYC related genes manually chosen by our clinical experts. 

As mentioned earlier gene expression mRNA levels do not necessarily fit protein expression 

levels. In the right end of the “MYC expression” track of the figure, there are 4 samples with high 

MYC gene expression level but low MYC protein staining values (0 or < 5%). Using iGSEA and 

iPASA, we are able to overcome this to some extend, and as you can see in the figure, the 

predicted high MYC activities actually fit with the high MYC protein staining values. The 

computational prediction results of iGSEA and iPASA are compatible with using “core MYC  

genes”, which is the current laborious manual procedure in our clinical lab. 

 

Figure 2: Predicted MYC pathway activities 

Figure 3 further shows the boxplot over 4 MYC protein staining categories, 0, < 5%, 5%−10% 

and > 10%. The figure clearly shows that our prediction values correlate with the experimental 

staining results. Although we cannot directly calculate the correlation coefficients due to the 

non-linearity, iGSEA and iPASA predictions show more difference between low (0 and < 5%) 

and high (5% − 10% and > 10%) MYC staining than using only MYC gene expression value. We 

also conduct leave-one-out cross validation using a simple threshold classifier between low and 
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high MYC staining; iGSEA and iPASA achieve the prediction accuracy 68.8% and 80.7% 

respectively, while using MYC gene only achieves 60.7%, and using the 6 core MYC genes also  

achieves 82.7%. 

Figure 3: Predicted MYC pathway activities vs. Experimental MYC staining results 

3. Methods 
iGESA 

The analysis of individual sample GSEA (iGSEA) is basically applying the classical GSEA [1] in 

1-vs-n matter, i.e. to compare each case sample to all n controls. Given the gene expression profile 

matrix Mp,(n+m) of p genes, n normal controls and m case samples, we first use the nnormal 

controls to estimate the mean and standard deviation of each gene’s “normal” expression state. 

Then we perform z-score transformation for the m cases using the estimated mean and standard 

deviation of each gene, and get a matrix zp,m. Further given a pathway signature of k gene names, 

we calculate the Enrichment Score (as described in GSEA [1]) for each case (column of matrix 

zp,m), which indicates how enrich these k genes are in a particular MM sample. This Enrichment 

Score is our predicted pathway activity index and permutation test can be further conducted to 

determine the significance of the score. Hence, unlike BinReg [2], our algorithm doesn’t need a 

training gene expression matrix of the pathway of interest, and can predict the pathway activities  

from simply a predefined pathway signature (k gene names). 

iPASA 

The idea of our iPASA (individual Pathway Activity Score Analysis) originates from the fact that 

using the average expression value of a handful of “core” genes for a pathway often gives very 

good estimation of the pathway activity. However, to find the “core” genes that can represent a 

23 
 



pathway is a laborious and difficult task which needs the help of clinic experts with in-depth  

understanding of the pathway of interest. iPASA is designed to tackle this problem. 

To start with, iPASA takes a predefined pathway signature of k gene names as input. These k 

genes (usually hundreds) are not necessarily to be “core” or verified genes related to the pathway, 

and are usually curated gene lists from literature or other high throughput gene mutation 

experiments. The key idea is that if a subset of “core” genes within these k genes actually indicates 

the pathway activities, there should be a reasonable degree of correlation among the expression 

values of these genes. Furthermore, genes which have higher correlations are likely to be the 

“core” genes, and therefore deserve a higher weight in the algorithm. Principle Component 

Analysis (PCA) [3] is a suitable mathematical tool for this task. Hence, iPASA uses the first  

principle component (PC1) as the predicted pathway activity score. 

Connection between iGESA and iPASA 

There exists intrinsic mathematical connection between iGSEA and iPASA. First of all, the 

z-score transformation in iGSEA is an analog to the centering and scaling procedure in PCA 

analysis. The Enrichment Score in iGSEA is k
ii=1

ES α z -βrank(z )≈ k∑ , where and α and β are 

constant coefficients, rank(zk) is the sorted rank order of zk. The predicted activities score in 

iPASA is , where ωi are PCA coefficients. So both two scoring methods have  
k

i ii=1
AS = ω z∑

similar form, and differ in weighting coefficients. 

4. Conclusions 
In this paper, we proposed two effective computational methods (iGSEA and iPASA) to predict 

the pathway activities of individual samples from microarray gene expression profiles. Comparing 

to GSEA [1], our methods can predict the pathway activities for each individual sample. 

Comparing to BinReg [2], our methods need only a list of gene names as input rather than a 

training GEP profile matrix for a pathway of interest. The results of our methods are compatible  

with BinReg and correlate nicely with real clinical experiments. 
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Abstract 
In this paper, we study the prediction of Transcription Factor Binding Sites, more precisely, 

the Motif Discovery Problem (MDP). We proposed a novel approach of using algorithmi- 

cally well-studied Nearest Neighbor Search (NNS) algorithms to tackle this problem. We 

also integrate several state-of-the-art algorithmic elements from the literature, including 

Local Sensitive Hashing, Hidden Markov Background Modelling, and Gibbs Sampling, 

into a uni03ed approach under a seed-and-grow framework. Experimental results shows 

that our algorithm outperforms other algorithms in term of both speed and solution quality. 
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Extended Abstract 

Large amounts of high dimensional biological data are generated from different high-throughput 

experiments and from literature. The rapidly growing number of databases and data types poses 

the challenge of integrating the heterogeneous data, especially in biology. Currently there are  

about 1170 important molecular biology databases [1]. 

Thus, the challenge is to capture, model, integrate and analyze the data in a consistent way to  

provide a new and deeper insight into complex biological systems. 

High throughput sequence investigation tools, array technologies for gene/protein analysis and the 

expanding electrical infrastructure for the study of molecular data represent the initiation of a 

virtual cell. The vision of implementation of a virtual cell combines bioinformatics and systems 

biology today. However, we are still a long way from implementing even a simple virtual cell. The 

first step in reaching this goal is to understand the metabolism, which is based on gene-controlled 

biochemical reactions. Therefore, modeling and simulation of metabolic networks is important. 

Regarding the literature, different methods of modeling biological networks have been introduced. 

One other problem is the quantitative simulation of these processes. Therefore, it is still an open 

question to find the most useful method for the simulation of biological networks, which will 

represent the backbone of a virtual cell. In our paper we will present a new tool which creates a  

large scale biological network using data integration and data warehousing methods. 

BioDWH[2] is implemented in Java and uses a relational database management system in its 

backend, e.g., Oracle or MySQL. It provides an easy-to-use Java application for parsing and 

loading the source data into the data warehouse. Several ready-to-use parsers for popular life 

science information systems are already available, such as: UniProt, KEGG, OMIM, GO, Enzyme, 

BRENDA, PDB, MINT, SCOP, EMBL-Bank, and PubChem. Furthermore, an XML-configurable 
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monitor for data source updates is part of the system. For status requests to the data warehouse, we 

have developed a graphical user interface that works with every web browser. A well-engineered, 

object-relational mapping tool called Hibernate was used as a persistence layer, which performs 

well and is independent from manufacturers like MySQL or Oracle. Additionally, the Hibernate 

framework fits perfectly into the Java-based infrastructure of the data warehouse. A Java interface 

and the object-relational mapping using Hibernate persistence or Java Persistence Architecture  

(JPA) constitute an easy plug-in architecture for integration of new parser. 

This object-relational mapping (ORM) is an automated and transparent persistence method of Java 

application for tables in a relational database system, whereas a mapping between objects and 

metadata of the database is described. In principle, ORM works with reversible transformation of 

data from one representation into another. An ORM solution consists of four parts: first, an 

application programming interface (API) that executes simple CRUD (create, retrieve, update, 

delete) operations using objects of persistent classes; second, a programming language or API to 

formulate queries that depend on Java entity classes or properties of classes; third, a facility for 

mapping metadata; finally, techniques of an ORM implementation to handle interactions of dirty 

checking, lazy association fetching and other optimization functions of transactional objects. 

The different features of BioDWH are usable by a graphical user interface. It enables the 

configuration of the monitor and parser for the different public life science data sources as well as  

the local database management system. BioDWH is available at http://biodwh.sourceforge.net/. 

Based on the CardioWorkBench EU project (http://www.cardioworkbench.eu/) we implemented a 

platform-independent data warehouse system that integrates multiple heterogeneous data sources 

into a local database enriched with protein microarrays from human smooth muscle cells that are 

related to cardiovascular diseases. Based on our VINEdb[3] information system we extended 

CardioVINEdb (http://agbi.techfak.uni-bielefeld.de/CardioVINEdb/) with more data sources, 

better data warehouse infrastructure including monitoring and microarray data. In addition, we 

upgraded the visualization components and web pages for better navigation and exploration. To 

ensure maximum up-to-dateness of the integrated data, we developed a data warehouse 

infrastructure including a monitor component. Furthermore, the common web-based user interface  

provides a visualization component that allows interactive exploration of the integrated data. 

Based on the data content of the BioDWH data warehouse, we would like to introduce VANESA 

(Visualization and Analysis of Networks in System Biology Applications). VANESA, a JAVA 

based software solution, is an application for modeling and visualization of biological networks.  
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With the use of VANESA, we were able to model and visualize the most important pathways 

based on the proteins in the different microarray samples. VANESA is available at  

http://vanesa.sourceforge.net/. 

 

Figure 1: Visualization of the Tight junction signaling pathway (hsa04530) by VANESA. The red marked 

place is the relevant protein on the microarry sample. 

[1] M.Y. Galperin. The Molecular Biology Database Collection: 2008 update. Nucleic Acids 

Research, 36(Database issue):D2-D4, 2008. 

[2] T. Töpel, B. Kormeier, A. Klassen and R. Hofestädt. BioDWH: A Data Warehouse Kit for Life 

Science Data Integration. Journal of Integrative Bioinformatics, 5(2):93, 2008. 

[3] S. Hariharaputran, T. Töpel, B. Brockschmidt and R. Hofestädt. VINEdb: a data warehouse for 

integration and interactive exploration of life science data. Journal of Integrative 

Bioinformatics, 4(3):63, 2007. Online Journal: http://journal.imbio.de/index.php?paper_id=63 
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1. Simulation-based Model Checking 
Model checking is a powerful technique for automatically verifying the requirements of finite 

state concurrent systems. Since the size of the state space grows exponentially with the number of 

processes when dealing with continuous values, this problem is generally intractable and serves as 

a major obstacle hampering further advancement. Till now, researchers generally deal with such 

problem by means of discretizing discrete model or continuous model of biological networks 

under specific abstraction criteria. We establish a quantitative methodology by handling 

quantitative values without such discretization, to model and analyze an in silico model 

incorporating the use of model checking based on a biosimulation tool Cell Illustrator Online 

(CIO). 

 
We construct above large-scale quantitative vulval precursor cell fate specification model of C. 

elegans with CIO. This probabilistic model involves totally 1761 components (place: 426, 

transition: 442, arc: 780). We performed 480,000 simulations and examined the consistency and 

correctness of the model under 48 sets of genotypes that are the combinations of four genes and 

one anchor cell. This method is proved to be a useful means to give researchers valuable 

biological insights and better understandings of biological systems and observation data that are 

hard to capture with the qualitative approach. 
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2. Cell Illustrator Online 
We developed a Cell System Ontology (CSO) (http://www.csml.org/) and Cell System Markup 

Language (CSML) for visualizing, modeling and simulating biological pathways.  Based on CSO 

and CSML, we developed a modeling and simulation tool Cell Illustrator Online (CIO, 

https://cionline.hgc.jp/) that enables wet lab biologists to draw, model, elucidate and simulate 

complex biological processes and systems such as metabolic pathways, signal transduction 

cascades, gene regulatory pathways and dynamic interactions of various biological entities (e.g. 

genomic DNA, mRNA and proteins). The architecture employs Hybrid Functional Petri Net with 

extension (HFPNe) which is an enhanced Petri net enabling intuitive modeling for biologists. CIO 

comes preloaded with TRANSPATH® pathways and chains, providing immediate access to signal 

transduction and metabolic pathway representations derived from the scientific literature. The 

integration of TRANSPATH reactions provides direct access to thousands of experimentally 

demonstrated binding and regulatory relationships – providing a unique set of building blocks for 

drawing custom networks and pathways. Furthermore, we have developed a method for automatic 

parameter estimation for HFPNe models by using a technolgy called data assimilation which 

"blends" simulation models and observational data "rationally". This data assimilation method is 

more suited for high performance computing systems and we plan to enroll this function into CIO  

in the near future for high performance computing environment. 
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Abstract 
Inspired by recent discovery that human dis- ease phenome shows a modular organization on the 

genetic  landscape, we introduce a network-module based method towards phenotype-genotype 

association inference and disease gene identification. This approach integrates protein-protein  

interaction network, phenotype similarity network and known phenotype-genotype associations, 

and then decomposes the resulted assembled network into modules (or communities)  wherein 

we identified and prioritized the disease genes from the candidates within the loci associated with 

the query disease using a linear regression model and concordance score. For the known 

phenotype-gene associations in the OMIM database, we used the leave-one-out validation to 

evaluate the feasibility of our method, and successfully ranked known disease genes at top 1 in 

887 out of 1807 cases. Moreover, applying this approach on 850 OMIM loci characterized by an 

unknown molecular basis, we propose high-probability candidates for 81 genetic diseases. 
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 An Algorithm to Produce Conditional Equation for Smooth 

Signal Flows in the Petri Net Model of a Signaling Pathway 
Yoshimasa Miwa 1 

1 Biopathway Analysis Center, Faculty of Science, Yamaguchi University, Yamaguchi, Japan 

Abstract 
Parameter determination is a critical problem in modeling and simulating biological pathways 

such as signaling pathways. Signaling pathways are information cascades of enzyme reactions 

from transmembrane receptors to the nucleus DNA, which ultimately regulate intracellular 

responses such as programmed cellular proliferation, gene expression, differentiation, secretion  

and apoptosis. 

Basic facts for deciding parameter can be obtained from biological experiments and scientific 

common principles. However, in the majority of cases, reliable data of detailed reactions have not 

been reported in biological literature.This leads us to develop a method that determines parameter  

of model without experimental data based on biological literature. 

In this study, we propose an algorithm to produce conditional equations that estimated parameters 

realize smooth signal flows in the model of a signaling pathway. We have used gPetri neth for 

modeling signaling pathways.Petri net is a powerful tool in modeling and simulating various 

concurrent systems, and recently have been widely accepted as a description method for biological 

pathways. We have used an example of IL-1 signaling pathway to demonstrate our proposed  

method. 

Firstly, we have modeled a discrete Petri net model of IL-1 signaling pathway.Then, we have 

determined the firing frequency of each transition by applying the proposed method for a part of 

the Petri net model of IL-1 signaling pathway. Finally, we have simulated Petri net model of IL-1 

signaling pathway to confirm the appropriateness and validity of proposed method by using Cell  

Illustrator 3.0 with the decided delay times. 
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Abstract 
Phenylpropanoid pathway is one of the most important secondary metabolic pathways in plants. 

Many of the products from different branches of this pathway, such as anthocyanins and flavonols, 

exhibit a broad spectrum of health-promoting effects when consumed as part of the diet. There is 

considerable interest in elucidating the regulation of this pathway and in enhancing the levels of 

these bioactive molecules in plants used as foods. Using an integration of targeted metabolomics 

and functional genomics approach, we have functionally identified a number of genes encoding 

BAHD acyltransferases involved in the phenylpropanoid-related pathways. By incorporating 

co-expression profiling with metabolite accumulation, genes encoding three anthocyanin acyl 

transferases were identified from Arabidopsis thaliana (1). By employing metabolomics-oriented 

reverese genetic approach, three genes encoding spermdine hydroxycinnamoyl transferases were  

identified with distinctive specificity (2)! 

For the metabolic engineering to enchance the accumulation of health-promoting compounds such 

as polyphenols derived from the phenylpropanoid pathway, fruit-specific expressing AtMYB12 (a 

MYB transcritption factor from A. thaliana) in tomato resulted in organe fruit with extremely high 

levels of multiple polyphenolic antioxidants (3). Simulaneously expressing two transcription 

factors (AmDel and AmRos1 from Antirrhinum majus) in a fruit-specific manner in tomato 

resulted in very high levels of anthocyanins in fruit with intense purple coloration in both peel and 

flesh. Cancer-susceptible Trp53C/C mice fed a diet supplemented with the purple tomatoes  

showed a significant extension of life span (4). 

(1) Luo, J et al., Plant J, 50, 678 (2007); (2) Luo, J et al., Plant Cell, 21, 318 (2009);  

(3) Luo, J et al., Plant J, 56, 316 (2008); (4) Butelli, E et al., Nat Biotechnol, 26, 1301 (2008) 
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Abstract 
We have used large surveys of Affymetrix GeneChip data in the public domain to conduct a study 

of antisense expression across diverse conditions.  

We derive correlations between groups of probes which map uniquely to the same exon in the 

antisense direction. When there are no probes assigned to an exon in the sense direction we find 

that many of the antisense groups fail to detect a coherent block of transcription. We find that only 

a minority of these groups contain coherent blocks of antisense expression suggesting 

transcription.  

We also derive correlations between groups of probes which map uniquely to the same exon in 

both sense and antisense direction. In some of these cases the locations of sense probes overlap 

with the antisense probes, and the sense and antisense probe intensities are correlated with each 

other. This configuration suggests the existence of a Natural Antisense Transcript (NAT) pair. We 

find the majority of such NAT pairs detected by GeneChips are formed by a transcript of an 

established gene and either an EST or an mRNA.  

In order to determine the exact antisense regulatory mechanism indicated by the correlation of 

sense probes with antisense probes, a further investigation is necessary for every particular case of 

interest. However, the analysis of microarray data has proved to be a good method to reconfirm 

known NATs, discover new ones, as well as to notice possible problems in the annotation of 

antisense transcripts.   

1. Introduction 

Our knowledge of the transcriptome is rapidly evolving and it is becoming increasingly clear that 

RNA plays a range of diverse roles in regulating gene expression [1]. Natural antisense transcripts 

(NATs) are endogenous RNAs whose sequences are complementary to other transcripts. Antisense 
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transcripts are implicated in transcription, processing, stability, transport and translation of their 

complementary RNAs [2]. NATs have now been found in many organisms, but we have little 

knowledge of the functions of many of these transcripts [3].  Bioinformatic approaches show a 

large number of potential NATs in genomic sequences, but provide no information about the 

expression of NATs in specific cell or tissue types [4]. It is therefore important to experimentally 

verify the expression of NATs in order to unravel their biology.   

Affymetrix GeneChip technology [5] is a widely used resource in the life sciences. GeneChips 

provide multiple measures of the expression level for each gene. Each probe is a 25-nt oligomer 

(25mer) and each probeset, designed to represent a different gene transcript, typically consists of 

eleven perfect match (PM) probes as well as corresponding mismatch (MM) probes. The 

widespread popularity of GeneChips, with large data-sets stored in public repositories such as the 

Gene Expression Omnibus [6], makes them particularly suited for unravelling aspects of the 

transcriptome across many conditions, for diverse conditions, developmental stages, phenotypes 

and diseases. However, such studies will be limited to a sample of the transcriptome, that for 

which there are probes with the appropriate sequence.  A huge number of expressed sequence 

tags (ESTs) were used in the design of the Affymetrix arrays [5] and due to the extensive use of 

such sequences Stalteri and Harrison [7] predicted that some probes may be mapping to exotic 

RNA sequences. We are not the only group to consider the use of Affymetrix data for exploring 

the biology of the transcriptome and there have already been searches for antisense expression 

using mouse arrays [8, 9].  

Experimental artefacts in the preparation of targets, such as spurious synthesis of complementary 

strands, may act to confuse the interpretation of genome-wide experiments [2]. In some cases it is 

likely that a significant number of postulated NATs may be artefacts produced by genomic 

priming with contaminant genomic DNA during cDNA library construction [3]. Given the 

potential for confusion resulting from artefacts, it is imperative that care is taken in analysing 

Affymetrix data when searching for NATs. It is widely assumed that on a GeneChip multiple 

probes from within the same probeset measure the same thing. However, we find there are a 

number of probesets that contain probes behaving inconsistently with the rest of the probeset [10]. 

Some of these discrepancies may result from interesting biological processes such as alternative 

splicing and alternative polyadenylation [7]. However, other problems result from spatial flaws in 

hybridization [11]. Moreover, some probes may not measure expression reliably, due to particular 

sub-sequences, or motifs, within their 25 bases. Wu et al. [12] reported that probes containing runs 

of guanine were typically outliers in probesets and also showed abnormal binding affinities. We 

recently confirmed that such probes are outliers [13], but further discovered that the probes 
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containing runs of guanine are unusually well correlated with each other across many thousands of 

experiments. We associate this effect with the formation of G-quadruplexes occurring on the 

surface of a GeneChip [13]. Studying correlations in expression across many experiments is 

informative because coordinated biases affecting many probes simultaneously can be identified.  

The regulation of antisense transcription might be tailored to its type of action [14], and the 

expression patterns of NATs and their targets might indicate the regulatory mechanism that is 

occurring.  For example, when both sense and antisense probes are correlated with each other 

they should measure the same thing. This might indicate bidirectional transcription, particularly as 

[15] discovered that antisense transcripts are mainly located in the promoter and terminator 

regions of genes. 

2. Materials and methods 
We use a pipeline to analyse tens of thousands of Affymetrix GeneChips [10] downloaded from 

the Gene Expression Omnibus [6]. Our pipeline brings together unique mappings of probes, 

quality control analysis on each GeneChip and data-mining signal intensities across many 

experiments.  

We first identify spatial flaws in individual GeneChips [11,16,17] that leads us to blank out signals 

from a fraction of each chip. We group all probes aligning to the same exon together, and we 

calculate the correlations between each of the probe pairs. The intensities are transformed onto a 

log scale and the signals are correlated across all experiments for one chip type. All the pair-wise 

probe correlations for each exon are collated into a matrix that is colour-coded according to the 

correlation value. The original correlation values are multiplied by ten, and then rounded, so that 

we express the correlations as integers. Heatmaps are symmetrical matrices in which the diagonal 

represents the perfect correlation of each probe with itself (correlation with value 10).  

We wish to only study unique probes, those that only target one place on one exon [10]. This 

means that we only utilise a fraction of the probes available on the GeneChip, but the fraction we 

use will have been chosen to provide reliable measurements. We proceed by calculating the 

alignment “value” for each probe through multiplying the alignment length and the percentage 

sequence identity, e.g. a probe that aligns to a sequence with 25 bases and percentage sequence 

identity of 80% has an alignment value of 20 (25x0.8). A probe is considered to be mapping 

uniquely to an exon if it: aligns exactly (25 bases, 100% identity) to only one exon and to any of 

its synonyms (i.e. the exons in the same genomic region but with different Ensembl identifiers); 

maps to only one place on the exon; does not map to any exon-exon junctions; does not map 
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substantially to any other exon (i.e. does not have an alignment value between 20 and 25 for any 

other exon). We also identify probes that map uniquely to exons in an antisense direction. Such 

probes map uniquely to the reverse complement of the exon sequence. An example of an antisense 

probe is illustrated in Figure 1. We can observe that the reverse complement of the sequence of 

probe 201427_s_at:294:1093 aligns to exon ENSE00001435187. Thus if the NAT to 

ENSE00001435187 is expressed, it will be detected by the probe 201427_s_at:294:1093.  

For the present study, we analyse the CEL files obtained from GEO for experiments that used the 

Human GeneChip HG-U133_Plus_2. We obtain our genomic coordinates and exon definitions 

from Ensembl (release 48). Probes containing the motif CCTCC or runs of four or more 

contiguous guanines were taken out of the exon heatmaps since they produce misleading 

information [18]. 

 

 

Figure 1. Probe 201427_s_at maps in an antisense direction to exon ENSE00001435187 (only a fragment is 

shown). 

3. Results 

In this section we present our analysis of the heatmaps generated for exons containing only 

antisense probes and for exons containing both sense and antisese probes. 

3.1 Exons with antisense probes only 
Almost all groups of antisense probes that map uniquely to an exon, but for which there are no 

sense probes mapping, showed low or negative correlation with each other. As an example, the 

antisense probes in Figure 2 are not correlated although they are from the same probeset 

(222076_at) and map to the same exon ENSE00000764836. The probes are not detecting a 

coherent signal. Figure 3 shows that there are RefSeq and Ensembl transcripts only on the positive 

strand. There are no transcripts on the negative strand, to which the probes in the probeset 
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222076_at map.  

 

Figure 2. The antisense probes from probeset 222076_at are not correlated. The columns indicate the probe 

order in the heatmap, probe identifier (in which pm means perfect match, followed by the order of the 

probe in its probeset), x-coordinate of probe location on the array, y-coordinate of probe location on the 

array, interrogation position of probe on Affymetrix consensus sequence, probe sequence, geometric mean 

of the intensities across GEO, and standard deviation (of the logs of intensities), respectively. The numbers 

in each of the cells represent the rounded correlation x 10.  

 

Figure 3. Screen-shot of the UCSC browser [19] shows that the probes in the probeset 222076_at 

are on the positive strand and exon ENSE00000764836 (in ENST00000230990) is on the negative 

strand. There are no transcripts aligning to the positive strand in this region. 

There are only a few cases in which antisense probes mapping uniquely to the same exon (or from 

the same probeset) are highly correlated. As an example, the heatmap in Figure 4 refers to a group 

of highly correlated (average correlation 0.84) antisense probes in the probeset 201427_s_at. The 

probes illustrated are the only probes in the probeset that uniquely map to the exon 

ENSE0001435187. The high correlations among these antisense probes suggest that there may be 

a real biological signal. Figure 5 shows that the probes in probeset 201427_s_at map to a region 

where there is overlap between the 3' ends of the CCDC152 and SEPP1 genes, which are 
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transcribed from opposite strands. Probeset 201427_s_at aligns to the negative strand, and thus it 

aligns sense to the SEPP1 transcripts, and antisense to the RefSeq transcript CCDC152 and to the 

Ensembl transcript ENST00000361970 (through exon ENSE00001435187) that are on the 

positive strand. Affymetrix assigns probeset 201427_at to SEPP1, with an annotation grade of “A”, 

i.e., at least 9 of the 11 probes perfectly match the associated transcripts [20], which in this case 

include the 3 RefSeq transcripts for SEPP1. The Affymetrix annotation for probeset 201427_s_at 

also includes several cross-hybridising transcripts assigned as having 11/11 Negative Strand 

Matching Probes. One of these is NM_001134848, the RefSeq transcript for CCDC152. The 

antisense (with respect to exon ENSE0001435187) transcription being detected is expected to be 

from the RefSeq transcripts corresponding to the SEPP1 gene. The NATsDB database [21] 

describes SEPP1 as belonging to a SA (sense-antisense) pair with the mRNA BC039102 that is on 

the positive strand. 

Figure 4. Highly correlated antisense probes from probeset 201427_s_at. The probes map in 

antisense direction to exon ENSE00001435187. 

Figure 5. Screen-shot of the UCSC browser [19] showing that probes in probeset 201427_s_at 

map to the SEPP1 transcripts (negative strand). 
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3.2 Exons with antisense and sense probes 
3.2.1 Classification by correlation heatmap 
Out of 1,048 exons that have sense and antisense probes mapping uniquely to them, we selected 

433 exons that have at least 4 sense probes and at least 4 antisense probes. We analysed a total of 

100 exons randomly selected out of the 433 exons with probes in both senses. The exons can be 

classified into the general patterns shown in Table 1. Detailed descriptions of the biology of 

example transcripts matching these patterns are presented in the Supplementary material.  

Table 1. Examples of general patterns of exons containing probes in sense and antisense directions. In each 

heatmap, the probes below the line align in the antisense direction and the probes above the line align in the 

sense direction. The antisense and sense probes do not necessarily overlap. 

Pattern 

Description 

Number 

of cases 

Example 

1: The sense 

and antisense 

probes are 

correlated. 

14 

 
 

ENSE00000876661 

40 
 



2: Only the 

antisense 

probes are 

correlated. 

4 

 
 

ENSE00000860190 

3: Only the 

sense probes 

are correlated. 

A sub-group 

of sense 

probes may 

not be 

correlated 

with another 

sub-group of 

sense probes. 

40  

 
 

ENSE00001454677 

 

4: The 

antisense 

probes are 

correlated, the 

sense probes 

are correlated. 

The antisense 

probes are not 

correlated or 

13 

 
 

ENSE00001452067 
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5: The probes 

are not 

correlated or 

are negatively 

correlated. 

26 

  
ENSE00001222306 

6: The 

antisense 

probes are 

correlated. 

Some of the 

sense probes 

are correlated. 

The antisense 

probes are 

correlated 

with a 

sub-group 

within the 

3 

 
 

ENSE00001485956 

3.2.2 Antisense and sense probes heatmaps across different GEO experiments 
In order to check whether the pattern presented by exon ENSE00001452067 (in pattern 4) was 

constant across different GEO experiments, we generated the heatmaps for this exon in 40 GSE 

experiment series that had at least 10 GSM cel files each. Figure 6 depicts these heatmaps and 

Table 2 contains the descriptions of the types of GSE experiments corresponding to each heatmap. 

The first 13 heatmaps from left to right starting at the top of Figure 6 correspond to experiments 

related to cancer. The remaining 27 heatmaps are not related to cancer. 

In general, we observe that the antisense probes are highly correlated across the different 

experiments either with cancer or not. The antisense probe correlations are represented by the first 

6 probes on the bottom left of the heatmaps. It seems that the presence of cancer does not 

determine the pattern of the correlation heatmaps. 
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3.2.3 General remarks 
When an exon has sense and antisense probes mapping uniquely to it, there is usually a SA (sense 

antisense) pair in the NATsDB database [21] associated to the gene which contains that exon.  

When sense and antisense probes overlap, the existing SA-pair is mainly formed by an established 

gene and by an mRNA or EST. This is confirmed by the work of Yelin et al. [22] who detected that 

the overlap between genes is frequently established by complementary ESTs, even when mRNAs 

are present in the clusters. They also observed that around 70% of the SA genes overlapped in 

their 5’-most and 3’-most exons (here called external exons) which supports the idea that SA 

overlap could be involved in gene regulation since the external exons contain UTRs of mRNAs. 

We find that ~70% of the exons containing sense and antisense probes are external exons and that 

~23% of the exons containing only antisense probes are external exons. 

The most frequent heatmap patterns found in our study are patterns 3 and 5. The exons which 

follow pattern 5 (nothing is correlated) tend to be NBD (non-bidirectional) NATs (i.e., the 

complementary sequences are found on the same strand going in the same direction) [23] or are 

not part of a SA-pair (in the NATsDB database). Pattern 3 involves exons in which only the sense 

probes are totally or partially correlated with each other. The fact that only sense probes are 

correlated suggests that there is no transcription in the antisense gene/RNA.  

4. Conclusions 
We find that for exons with only antisense probes mapping uniquely to them, the antisense probes 

are typically not correlated with each other. This suggests that the expression seen in each of these 

probes is not coherently detecting an antisense transcript. Just because strong signal is seen in a 

small fraction of the probes within an antisense probeset does not mean that the transcript is 

detected. Careful analysis of each probeset is required on a case by case basis.  

For most of the cases where exons contain both sense and antisense probes, there is a SA-pair in 

which one transcript belongs to an established gene and the other is an EST or mRNA. In some 

cases there might be a novel antisense transcript since there are high correlations in the locus 

where the annotations indicate that there is not a transcript/RNA. In other cases there is a 

transcript in the antisense direction that does not cover the locus where the highly correlated 

probes align. This suggests that the transcript might be longer than the current annotation indicates. 

Care has to be taken when analysing the data considering that some probes might behave in 

different ways according to the type of experiment. 
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Our method for studying the correlations of sense and antisense Affymetrix probes has been 

shown to be useful for finding possible NATs, confirming existing ones, suggesting the existence 

of novel transcripts, or suggesting the reannotation of transcripts.  

Figure 6. Heatmaps with data from different experiments for exon ENSE00001452067. The 

heatmap representing the overall experiments is in Table 1 pattern 4 (the antisense probes are 

correlated, the sense probes are correlated, and the sense probes are not correlated or are weakly 

correlated with the antisense probes). 
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Experiment Type Cancer

GSE5787 cervical cancer y 

GSE4218 glioblastoma cancer cells in culture (different states) y 

GSE3744 breast cancer y 

GSE3325 prostate cancer and control y 

GSE6338 peripheral T-cell lymphoma and control y 

GSE6004 thyroid cancer and control y 

GSE5816 cancer cell lines, treatment and control y 

GSE5823 cancer cell lines, c-myc knockdown and control y 

GSE2842 childhood ALL, treated and untreated and controls y 

GSE2677 childhood ALL, treated and untreated and controls y 

GSE2109 Cancer in different tissues y 

GSE3202 non-small cell lung cancer cell lines, treatment and control y 

GSE3678 PTC (papillary thyroid carcinoma) and paired controls y 

GSE5679 dendritic cells (monocytes) ligand treatment and control n 

GSE5264 bronchial epithelial cells, differentiation time course n 

GSE5281 LCM-capture cells in Alzheimer's brain and normal controls n 

GSE5350 microarray quality control project, reference human RNA, reference human brain 

RNA and mixtures of the two 

n 

GSE5372 airway epithelial cells before and after injury n 

GSE5563 vulvar intraepithelial neoplasia and control n 

GSE2125 alveolar macrophages n 

GSE6207 human liver cell line (HepG2), transfected with miR-124, and controls n 

GSE6575 whole blood from children with autism and controls n 

GSE5809 endometrial stromal cells, treatment and control n 

GSE2634 human and non-human primate blood n 

GSE5968 HepG2 cell line transfected with PGC-1 transcription factor mutants, and controls n 

GSE4036 cerebellar tissues of schizophrenic patients and controls n 

GSE4217 spheroid formation and recovery of human foreskin fibroblasts at ambient temperature n 

GSE4237 pituitary adenomas (benign brain tumor) n 

GSE4888 endometrium sampled across the cycle in 28 normo-ovulatory women n 

GSE3284 blood leukocyte receiving inflammatory stimulus and controls n 

GSE3526 normal post-mortem tissue samples n 

GSE3077 dilution series of blood and placenta, comparison of Illumina and Affymetrix 

platforms 

n 

GSE4984 monocyte derived dendritic cells, treatment and control n 
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GSE5040 lymphoblast cell lines from patients with Freidriech's ataxia and normal controls, 

treated and untreated 

n 

GSE5110 skeletal muscle biopsies from men before and after 48 h knee immobilization n 

GSE4488 blood from affected and obligatory carriers of pituitary adenoma predisposition (PAP) 

and controls 

n 

GSE4600 SH-SY5Y neuroblastoma cell line, undifferentiated, differentiated, transfected with 

MeCP2 decoy oligonucleotide and controls 

n 

GSE4773 SK-N-MC neuroblastoma cell line, treatment with rotenone and controls n 

GSE4780 benign (grade 1) and aggressive (grades 2 and 3) meningiomas - 

GSE2817 gliomas (brain tumors) - 

Table 2. Description of the GSE experiments 

Acknowledgements 

OSG and MS are supported by a grant from the BBSRC (BB/E001742/1). JR is supported by a 

Strategic Studentship from the BBSRC (BBS/S/H/2005A/11996A). We are grateful to Dr. William 

Langdon for the development of a number of software tools used in this research.  

References 

[1] J. Mattick, RNA regulation: a new genetics?, Nature Reviews Genetics, 5:316, 2004 

[2] F. Perocchi, Z. Xu, S. Clauder-Münster and L. Steinmetz, Antisense artifacts in transcriptome 

microarray experiments are resolved by actinomycin D., Nucleic Acids Research, 35:e128, 2007  

[3] P. Galante, D. Vidal, J. de Souza, A. Camargo and S. Souza, Sense-antisense pairs in mammals: 

functional and evolutionary considerations, Genome Biology, 8:R40, 2007  

[4] Ø. Røsok and M. Sioud, Systematic search for natural antisense transcripts in eukaryotes., 

International Journal of Molecular Medicine, 15:197-203, 2005 

 [5] Affymetrix Inc. Design and performance of the GeneChip Human Genome U133 Plus 2.0 and 

Human Genome U133A 2.0 Arrays., Technical Note Part No. 701483 Rev.2., 2003 

[6] T. Barrett, D. Troup, S. Wilhite, P. Ledoux, D. Rudnev, C. Evangelista, I. Kim, A. Soboleva, M. 

Tomashevsky and R. Edgar, NCBI GEO: mining tens of millions of expression profiles – database 

and tools update., Nucleic Acids Research, 35: D760-D765, 2007  

[7] M. Stalteri and A. Harrison, Interpretation of multiple probe sets mapping to the same gene in 

Affymetrix GeneChips, BMC Bioinformatics, 8, 13, 2007 

[8] S. Oeder, J. Mages, P. Flicek and R. Lang R. Uncovering information on expression of natural 

antisense transcripts in Affymetrix MOE430 datasets., BMC Genomics, 8:200, 2007 

[9] A. Werner, G. Schmutzler, M. Carlile, C. Miles and H. Peters, Expression profiling of antisense 

transcripts on DNA arrays., Physiol. Genomics, 28:294, 2007  

[10] O. Sanchez-Graillet, J. Rowsell, W.B. Langdon, M. Stalteri, J. Arteaga-Salas, G. Upton and A. 
46 

 



Harrison, Widespread existence of uncorrelated probe intensities from within the same probeset on 

Affymetrix GeneChips., Journal of Integrative Bioinformatics, 5(2):98, 2008  

[11] J. Arteaga-Salas, H. Zuzan, W. Langdon, G. Upton and A. Harrison, An overview of image 

processing methods for Affymetrix GeneChips., Briefings in Bioinformatics, 9(1):25, 2008 

[12] C. Wu, H. Zhao, K. Baggerly, R. Carta and L. Zhang, Short oligonucleotide probes containing 

G-stacks display abnormal binding affinity on Affymetrix microarrays, Bioinformatics, 

23:2566-2572, 2007 

[13] G. Upton, W. Langdon and A. Harrison, G-spots cause incorrect expression measurement in 

Affymetrix microarrays., BMC Genomics, 9:613, 2008  

[14] M. Lapidot and Y. Pilpel, Genome-wide natural antisense transcription: coupling its 

regulation to its different regulatory mechanisms., EMBO Rep., 7(12):1216–1222, 2006  

[15] Y. He, B. Vogelstein, V. Velculescu, N. Papadopoulos and K. Kinzler, The Antisense 

Transcriptomes of Human Cells. Report., Science,322(5909):1855–1857, 2008 

[16] G. Upton and C. Lloyd, Oligonucleotide arrays: information from replication and spatial 

structure., Bioinformatics, 21:4162, 2005 

[17] W. Langdon, G. Upton, R. Camargo and A. Harrison, A survey of spatial defects in Homo 

Sapiens Affymetrix GeneChips, Transactions on Computational Biology and Bioinformatics, 

TCBB.2008.108, 2008 

[18] G. Upton, O. Sanchez-Graillet, J. Rowsell, J. Arteaga-Salas, N. Graham, M. Stalteri, F. 

Memon, S. May and A. Harrison, On the causes of outliers in Affymetrix GeneChip data., 

(Submitted) 

[19] W. Kent, C. Sugnet, T. Furey, K. Roskin, T. Pringle, A. Zahler and D. Haussler, The Human 

Genome Browser at UCSC., Genome Res., 12:996-1006, 2002 

[20] Affymetrix Inc. Affymetrix GeneChip IVT Array Whitepaper Collection. Transcript 

Assignment for NetAffx Annotations. Revision Date: 2006-3-24. Revision Version: 2.3. 

Transcript_Assignment_whitepaper.pdf, 2006 

[21] Y. Zhang, J. Li, L. Kong, G. Gao, Q.R. Liu and L. Wei., NATsDB: Natural Antisense 

Transcripts DataBase., Nucleic Acids Res., 35(Database issue):D156-61, 2007 

[22] R. Yelin, D. Dahary, R. Sorek, E. Levanon, O. Goldstein, A. Shoshan, A. Diber, S. Biton, Y. 

Tamir, R. Khosravi, S. Nemzer, E. Pinner, S. Walach, J. Bernstein, K. Savitsky, G. Rotman, 

Widespread occurrence of antisense transcription in the human genome. Nat Biotechnol., 

21(4):371-2, 2003  

[23] J. Chen, M. Sun, W. Kent, X. Huang, H. Xie, W. Wang, G. Zhou, R. Shi, J. Rowley. Over 20% 

of human transcripts might form sense-antisense pairs. Nucleic Acids Research,32(16):4812–20, 

2004 

47 
 



Genome-wide survey of rice microRNAs and 

microRNA–target 

pairs in the root of a novel auxin-resistant mutant 
Yijun Meng · Fangliang Huang · Qingyun Shi · Junjie Cao · Dijun Chen · Jinwei 

Zhang · Jun Ni ·Ping Wu · Ming Chen 

Y. Meng · F. Huang · D. Chen · J. Zhang · J. Ni ·P. Wu · M. Chen 

State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, 

Zhejiang University, 310058 Hangzhou, People’s Republic of China. 

Q. Shi · J. Cao · D. Chen · M. Chen: Department of Bioinformatics, College of Life Sciences, 

Zhejiang University, 310058 Hangzhou, People’s Republic of China. 

Abstract 
Auxin is one of the central hormones in plants, and auxin response factor (ARF) is a key regulator 

in the early auxin response. MicroRNAs (miRNAs) play an essential role in auxin signal 

transduction, but knowledge remains limited about the regulatory network between miRNAs and 

protein-coding genes (e.g. ARFs) involved in auxin signalling. In this study, we used a novel 

auxin-resistant rice mutant with plethoric root defects to investigate the miRNA expression 

patterns using microarray analysis. A number of miRNAs showed reduced auxin sensitivity in the 

mutant compared with the wild type, consistent with the auxinresistant phenotype of the mutant. 

Four miRNAs with signiWcantly altered expression patterns in the mutant were further 

conWrmed by Northern blot, which supported our microarray data. Clustering analysis revealed 

some novel auxin-sensitive miRNAs in roots. Analysis of miRNA duplication and expression 

patterns suggested the evolutionary conservation between miRNAs and protein-coding genes. 

MiRNA promoter analysis suggested the possibility that most plant miRNAs might share the 

similar transcriptional mechanisms with other non-plant eukaryotic genes transcribed by RNA 

polymerase II. Auxin response elements were proved to be more frequently present in 

auxin-related miRNA promoters. Comparative analysis of miRNA and protein-coding gene 

expression datasets uncovered many reciprocally expressed miRNA–target pairs, which could 

provide some hints for miRNA downstream analysis. Based on these Wndings, we also proposed a 

feedback circuit between miRNA(s) and ARF(s). The results presented here could serve as the  

basis for further in-depth studies of plant miRNAs involved in auxin signalling. 

Keywords: Auxin response element · Auxin response factor · Auxin signaling · Microarray ·  

MicroRNA–target pairs · Rice root 

48 
 



Gene expression profile displaying up-regulation and 

down-regulation of amino acid nutritional metabolic 

modules 

Jing Li 1 
1 Tianjin University of Science and Technology, Tianjin, China 

Abstract 
The raw gene expression data of yeast were excavated by SMD (Stanford Microarray Database) 

and amino acid metabolic pathway from KEGG (Kyoto Encyclopedia of Genes and Genomes). 

The methionine and cysteine nutritional metabolic modules were selected and analyzed, expecting 

to establish the relationship between the modules, and find out the important genes, which made 

predominant contribution for the up-regulation and down-regulation of modules, trying to identify  

the gene expression differences and synergies. 

The results show that four common genes exist between these two modules, comprising 

YAL012W (4.4.1.1), YFR055W (4.4.1.8), YJR130C (2.5.1.48) and YLR303W (2.5.1.49). For 

methionine modules, the five important genes were YAL012W (4.4.1.1), YDR502C (2.5.1.6), 

YER043C (3.3.1.1), YGR155W (4.2.1.22) and YLR303W (2.5.1.49), playing the decisive role in 

the gross of gene expression, while for cysteine modules, YAL012W (4.4.1.1), YLR303W 

(2.5.1.49), YNL247W (6.1.1.16) and YCL064C (4.3.1.17) were important. By common genes and 

important genes, maybe the cooperative up-regulation relationship exists between these two 

modules. Our investigation also found that certain crucial metabolite can be accumulated by  

controlling the important genes in the metabolic process. 

49 
 



Identifying the impact of G-Quadruplexes on Affymetrix 

exon arrays using cloud computing 
Farhat N. Memon, Olivia Sanchez-Graillet, Graham J. G. Upton, Anne M. Owen and 

Andrew P. Harrison* 

Departments of Mathematical Sciences and Biological Sciences, University of Essex, 

Wivenhoe Park, Colchester, Essex, CO4 3SQ, United Kingdom 

*Corresponding author:harry@essex.ac.uk 

http://bioinformatics.essex.ac.uk/ 

Summary 
A tetramer quadruplex structure is formed by four parallel strands of DNA/ RNA containing runs 

of guanine. These quadruplexes are able to form because guanine can Hoogsteen hydrogen bond 

to other guanines, and a tetrad of guanines can form a stable arrangement. Recently we have 

discovered that probes on Affymetrix GeneChips that contain runs of guanine do not measure 

gene expression reliably. We associate this finding with the likelihood that quadruplexes are  

forming on the surface of GeneChips. 

Our original discovery was made using 3′ arrays. We have now extended our analysis to look at 

Affymetrix Exon arrays. In order to cope with the rapidly expanding size of Exon array datasets in 

the public domain, we are exploring the use of cloud computing. This is a recently introduced 

high-performance solution that takes advantage of the computational infrastructure of large  

organisations such as Amazon and Google. 

We expect that cloud computing will become widely adopted because it enables bioinformaticians 

to avoid capital expenditure on expensive computing resources and to only pay a cloud computing 

provider for what is used. Moreover, as well as financial efficiency, cloud computing is an 

ecologically-friendly technology, it enables efficient data-sharing and we expect it to be faster for 

development purposes. Here we propose the advantageous use of cloud computing to perform a  

large data-mining analysis of public domain Exon arrays. 

1. Introduction 
1.1 G-Quadruplex 
The binding of guanine to cytosine and adenine to thymine usually occurs through the famous 

Watson-Crick interactions in double stranded DNA. However, in single-stranded DNA sequences, 

a guanine can bind to another guanine through a Hoogsteen hydrogen bond. A tetrad of guanines 
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can then form a loop, in which each guanine can bind to two other guanines at 90 degrees (similar 

to the edges of a square). Indeed, this occurs throughout a genome because single-stranded DNA 

sequences that have frequent occurrences of guanine runs are capable of forming four-stranded  

structures, known as G-Quadruplexes, G-tetrads, or G4 DNA [1]. 

In a single strand of DNA, a G-quadruplex consists of four runs of guanines (called the stems of 

G-quadruplex) with three loops in between the four stems. GGGAGCGGGTTGACGGGAAGGG, 

a segment of single stranded DNA sequence for instance, can form a G-quadruplex in which the 

four sets of underlined Gs represent four stems of guanine and the nucleotides in between these 

stems create loops. Both the stem size and loop size have biological significance. As the stem size 

increases, a G-quadruplex becomes more stable; whereas an increase in loop size weakens the  

stability of quadruplexes [1]. 

[2] demonstrated that G-rich nucleic acid sequences can adopt quadruplex structures that are 

stabilised by the presence of G-quartets (Figure 1). A G-quadruplex may not necessarily form 

through a single nucleic acid sequence; sometimes two or four parallel nucleic acid sequences may  

form a G-quadruplex collectively. 

Figure 1(B) illustrates a number of different topologies for G-quadruplexes. For example, the 

Monomer Chair and Monomer Basket show G-quadruplexes that are formed in a single nucleic 

acid sequence, whilst the Dimer Chair and Dimer Basket illustrate that two G-rich nucleic acid 

strands are capable of forming a G-quadruplex. Indeed a tetramer can result from four parallel 

strands forming a G-quadruplex. A quadruplex that forms through more than one sequence falls 

into the category of Intermolecular Quadruplex structures. Thus, the Dimer and Tetramer are both 

examples of Intermolecular Quadruplex structures [3]. Keeping tetramer quadruplex structures in 

mind, we are investigating the implications for microarrays that are used to analyse genomic data. 

1.2 Affymetrix GeneChips enable whole-transcriptome studies of the Genome 
The production of messenger RNA reflects the activity level of a gene, and many biologists are 

interested in the conditions in which a specific gene is turned on or turned off. Microarray 

technology allows the simultaneous study of many genes in parallel, providing a snapshot of how 

a genome is operating. A microarray usually consists of a glass slide, containing a 2D array of an 

orderly arrangement of fragments of single-stranded DNA, referred to as probes, that represent the 

genes of an organism. Each DNA fragment representing a gene is assigned a specific location on 

the array. A fluorescently labeled DNA or RNA (target sequence) will stick through hybridisation 

to its complementary probe. The genes that are active are detected through measuring the light  
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Figure 1: Schematic presentation of G-quartet structures. (A) G-quartet. 

(B) Different layouts/topologies and loop orientation of quadruplexes (Source: 

http://nar.oxfordjournals.org/cgi/content/full/31/8/2097) 

from the excited fluorescence of the labelled DNA or RNA. 

There are many types of microarray that are commercially available. However, in this study we 

focus on the Affymetrix GeneChip, a high density oligonucleotide array. An Affymetrix 

GeneChip consists of 25-mer oligonucleotide probes which have been synthesised in-situ through 

photolithographical methods. Each gene is represented by several probes, collectively called a 

probe set. The size of a GeneChip covered by an array of probes is 1.28cm×1.28cm. Due to 

improvements in array manufacturing  technology, the number of distinct probe sequences within 

this area has increased over time, with some of the latest designs having over 5 million different 

cells, each containing many thousands of copies of a distinctive probe sequence. Figure 2 shows 

the basic construction of an Affymetrix GeneChip. 
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Figure 2: Basic Structure of Affymetrix GeneChip 

rce: (Sou pghttp://electronicdesign.com/Files/29/10603/Figure 06.j ) 

Affymetrix has released GeneChips for most major model organisms. One of their most widely 

used designs is known as a 3′ Array, because most probes are selected towards the 3′ region of a 

gene. Some cross-hybridization to other transcripts can occur even though the probes are selected 

to ideally avoid such cross-hybridisation. This led to the Affymetrix 3′ design including, for each 

gene-specific probe, a probe that is identical in sequence except for a complementary base at its 

centre (13th base). These mismatch (MM) probes are placed immediately adjacent to their perfect 

match (PM) probes. In this way, each gene is represented by 22 different probes (11 Perfect match 

probes and 11 Mismatch probes). The design philosophy is that 11 signal intensities measure a 

particular gene fragment plus a sequence-specific background; while 11 mismatch probes report a 

close approximation to the sequence-specific background. The intention is that subtraction of the 

MM signal from the PM signal will result in a measure of a genes expression, though strategies 

are required to deal with the not infrequent cases where it is the MM signal that is the greater. The  

multiple measurements of gene expression are collated into one composite expression measure. 

Affymetrix has introduced another chip design, the Exon array, which is designed to investigate 

exon-level expression. They have smaller probesets and these probesets detect exons across the 

gene, not just towards the 3′ end. Mismatch probes do not exist in Exon arrays. There are 
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approximately four probes per exon and roughly 40 probes per gene. Exon arrays 

enable ”exon-level” analysis, which allows us to distinguish between different isoforms of a gene, 

and to detect specific alterations in exon usage, some of which may play a central role in disease 

mechanism and etiology. Exon arrays also allow ”gene-level” expression analysis, that 

summarises multiple probes on different exons into an expression value of all transcripts from the 

same gene. 

1.3 Identifying problems in GeneChip data 
Affymetrix report that over 10,000 published papers have used or described their technology. As 

each typical study comprises multiple GeneChips, there are now many tens of thousands of 

GeneChips in the public domain that are now available for meta-analysis. Although the power of 

GeneChip technology is widely recognised, many open questions remain about the appropriate 

analysis of GeneChip data. This is particularly true now that we have the opportunity to mine 

large GeneChip datasets in order to discover novel signatures associated with diseases. 

It is expected that if a particular gene is highly expressed then all the probes in a probe set 

representing that gene will be consistent in showing the presence of that particular gene. However, 

[4] found that probes containing runs of guanine show abnormal affinities; they tend to have 

increased cross-hybridisation signals and reduced target-specific hybridisation signals, presumably 

due to multiplex binding forming G-quartet structures. We recently confirmed that probes having 

a sequence of four or more guanines, which we termed G-spots, typically have poor correlation 

with other probes in their probeset [5]. However, we went further in discovering that the 

intensities reported from these G-spot probes are correlated with each other. We suggested that the 

intensities reported by these probes should not be used in the calculation of gene expression values 

and these G-spot probes should not be included within future array designs. 

We have proposed that structures closely resemblingG-quadruplexes are forming on GeneChips, 

and this is why probes containing runs of guanine are not fit for purpose [5]. Neighbouring probes 

with the same sequence can come into physical contact on a GeneChip. For most sequences which 

lack complementary sections they will not be expected to hybridise to each other. But for probes 

containing runs of guanine, it is possible that a stack of Hoogsteen hydrogen bonds can occur [5]. 

A grouping of four probes can then form a stable tetrad at each guanine, and the resulting stack of 

tetrads forms a G-quadruplex. In such a G-quadruplex the guanines face inwards and are not 

available to hybridise to target sequences. But in the interpretation of [5], the formation of a 

G-quadruplex frees up space in the immediate surroundings of the four probes. This reduction in 

probe density increases the rate, and strength, of hybridization between target RNA sequences 
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containing runs of cytosines and the neighbouring probes, all of which contain runs of guanine. 

This results in cross-hybridisation dominating for these probes, and the G-spot probes not 

detecting the target RNA for which they were chosen. This accounts for why the G-spot sequences  

are poorly correlated with other probes that are able to measure target RNA reliably. 

We aim to focus on Exon arrays in order to examine whether the problems found in 3′ arrays, 

specially the misbehaviour of G-spot probes, also affect Exon arrays. Although we have only used 

Human Exon 1.0 ST V2 arrays in our study, our results should apply to any Affymetrix Exon  

array. 

2. Method 
Section 2.1 explains our approach to analyse Affymetrix Exon arrays and section 2.2 describes 

cloud computing, a high-performance technology we have adopted for this study. 

2.1 Our approach 
We have designed a pipeline to analyse Affymetrix exon arrays, downloaded from NCBI’s Gene 

Expression Omnibus (GEO). Our pipeline processes CEL files, the data files that contain average 

fluorescence intensity of each probe in the array. The pipeline includes uniquemapping of probes 

to exons, calibration processes for quality control analysis, and creation of heatmaps for all 

Ensembl-defined exons. We have used a similar methodology to that of our previous work on 3′ 

arrays [6], but necessarily ignore the contribution from MM probes (which are missing on Exon  

arrays). 

2.1.1 Unique probe mappings 
Rather than using information from all the probes on an array, we are selective and only use 

probes which are uniquely mapping to an exon, in order to reduce the effects of crosshybridisation. 

We have described previously [6] that we consider a probe to be uniquely mapping to an exon if it 

completely aligns with 25 bases to only one exon and to any of its synonymous exons (i.e. exons 

located on the same genomic region, although they have different Ensembl identifiers). Moreover, 

we insist that the alignment of completely 25 bases should only be at one place on the exon. 

Furthermore, the probes should not map partially or totally (20 or more bases) to any other exon.  

[6] provides more details about our way of establishing unique mappings. 

2.1.2 Calibration process 
[7] reported that many gene expression measures more than doubled when they introduced typical 

levels of spatial noise seen in raw GeneChip data. Thus an important issue in the analysis of 
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microarray is quality control, and we apply a calibration process that includes normalization and  

detection of spatial flaws in all CEL files [8]. 

2.1.3 Generation of exon Heatmaps 
The last phase is to generate heatmaps of all Ensembl exons. We are currently using Ensembl 

Release 48. We assume that if an exon is within transcripts in the sample then all the probes 

detecting that exon should, ideally, respond in the same way, i.e. the fluorescent signals from these 

probes should be correlated. We examine the correlation coefficient value between the pairs of 

probes using the processed CEL files and then generate the heatmap for quick visualization and 

easy analysis. We use a heatmap as a graphical representation of the correlations between the 

levels of expression of different probes across a number of samples. Each cell in a heatmap is 

colour coded according to the cell’s correlation coefficient value. A bright white to yellow cell 

indicates highly correlated pairs of measurements while a dark blue cell represents a poor/low 

correlation. The cells on the diagonal always correspond to correlation coefficients of one,  

because we are comparing a probe with itself. 

 
 
Figure 3: Collection of all probes that represent Ensembl exon ENSE00000330846. First column contains 

sequence number in which these probes appear in heatmap. Next column have probe IDs followed by X 

andY positions, probe set ID, their position in Ensembl exon, sequence of nucleotide, geometric mean, and 

standard deviation. The values inside each cell of heatmap represent the rounded value of (correlation x 10). 

In our previous work on 3′ arrays, G-spot probes are poorly correlated with other members of their 

probesets but are highly correlated with each other [5]. We are expecting to see the same 

behaviour of G-spot probes in Exon arrays. This is suggested by Figure 3, which illustrates a 

heatmap representing the correlations between pairs of seven probes uniquely mapping to the 

Ensembl exon ENSE00000330846. Probes 2, 3, 4, and 5 are highly correlated relatively bright 
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cells. However, probes 1 and 6 are behaving as outliers and are poorly correlated with other 

probes, but partially correlated with each other. Probe 1 contains a sequence of four guanines  

whilst probe 6 contains three consecutive guanines. 

2.2 Cloud Computing 
There was a time when companies used their own generators to produce electricity for running 

their factories or plants. This usually required a large capital expenditure when purchasing 

dynamos, and also required maintenance costs. This business model was quickly dropped and 

companies started to buy electricity from a utility supplier of electricity, because it proved to be 

cheaper and easier to buy electricity as a commodity without worrying about maintenance and  

updating equipment. 

It is becoming increasingly apparent that computing is performing a similar transition at present, 

with computing, and other information technologies, being sold as a commodity which can be 

purchased from utility suppliers. The availability of significant computational opportunities is 

being provided by several companies, such as Amazon, Google, and Microsoft. They provide 

high-performance solutions that enable users to utilise their computational infrastructure, and to 

only pay for the resources used. The web services platform of these organisations are suitable for 

user groups of any size, including individuals. The “Cloud computing” concept is very simple: the 

computing resources are located somewhere (not in your office/ computer room) and you will  

connect to them and use them according to your requirement. 

Cloud computing enables bioinformaticians to avoid capital expenditure on computers which 

rapidly decrease in value. It also minimises the time and effort required to maintain large clusters 

and removes the requirement for space and cooling systems needed to house the computers. We 

expect that cloud computing will be widely adopted by bioinformaticians in the near future. 

Furthermore, cloud computing is a green technology, as the carbon footprint of one large 

datacentre is much less than that of many groups housing their own inefficient computational 

infrastructure. Moreover, many users can easily gain access to shared data on the cloud, and don’t  

have to worry about the inconvenience of managing, and paying for, lots of data transfer. 

We have begun to explore the use of cloud computing through Amazon’s platform, though 

Amazon does not require any long term commitment of its users. They provide us with the 

flexibility to choose any development platform or programming model that is most appropriate for 

the problems to be solved. Amazon Web Services (AWS) provide different services which 

includes Amazon Elastic Compute Cloud (Amazon EC2), Amazon Simple DB, Amazon Simple 

57 
 



Storage Service (Amazon S3), Amazon CloudFront, Amazon Simple Queue Service (SQS),  

Amazon Elastic MapReduce, AWS Premium Support. 

AWS is already hosting some public data sets, including Ensembl and some of the NCBI 

databases [9]. We expect that Ensembl and NCBI will continue their practice of uploading all their 

data, as it grows beyond the petabyte scale[10]. This is beneficial to our work, as we already use  

several of these databases, and we do not need to cover the costs of uploading this data. 

To get high computing power, we use Amazon Elastic Compute Cloud (EC2) that provides an 

environment to run virtual servers on demand, Amazon Simple Storage Service (S3) is used to 

store our own data; whilst Amazon’s public data sets enable us to use some of the Ensembl and 

NCBI data freely. To use Amazon EC2 service, an Amazon Machine Image (AMI) is required. An 

AMI is an encrypted machine image (a file) that contains all the information required to boot an 

instance of our software and it stores in Amazon Simple Storage Service (S3). One can either 

create its own AMI or use public AMIs (public AMI can be used as it is or with some 

modification). The next step, bundling an AMI, performs certain tasks related to confidentiality 

and authentication which include the compression of AMI in order to minimise bandwidth usage 

and storage requirements, encryption of the AMI, breaking down the encrypted AMI into smaller 

chunks to upload, and creation of a file that contains the details about the image’s small chunks 

with their checksum values. Then one or more instances can be launched for that AMI and finally 

we administer these instances as we do on our server. The block diagram to show the flow of EC2  

is depicted in Figure 4. 

 
Figure 4: Amazon Elastic Cloud Compute (EC2) Flow (Source: http://aws.amazon.com/) 

3. Conclusion and Future Work 
Our previous study concluded that G-spot probes in 3′ arrays usually have poor correlations with 

other members of their probe set but are typically highly correlated with each other. For this 
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purpose, we have already generated the heatmaps for 3’ arrays that include eleven human arrays, 

twelve mouse arrays, as well as some plant arrays, all of which can be obtained via  

http://bioinformatics.essex.ac.uk/. 

We have now generated heatmaps for all the Ensembl exons to analyse Human Exon array ST V2 

in order to find misbehaving probes and their causes. The Exon array ST V2 occupies more space 

and resources, principally because 3′ arrays contain far fewer examples of exons than do Exon 

arrays. The heatmaps for one human Exon array design occupys 8.6 GB whilst the heatmaps for  

eleven human 3′ array designs require 5.5 GB. 

We have found examples of exons on the Exon array that contain more than 100 uniquely 

mapping probes but for which the majority of the probes are not correlated with each other. We 

are currently investigating the causes of this unexpected behaviour. We have also collated probes 

contain runs of guanines, and are in the process of using the cloud to derive correlations among 

these probes, as well as the correlations between these probes and the other members of their 

respective probesets. This will enable us to directly compare the behaviour of G-spot probes in 

Exon arrays with those in 3′ arrays. We expect to find similar behaviour within the different  

designs. 

We require an ever-increasing amount of computational resources in order to carry mining of large 

biological datasets. It is our opinion that we, and other groups with similar interests, will 

increasingly turn towards cloud computing solutions. To our knowledge, this paper is the first  

study of using cloud computing for performing microarray analysis. 
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Centroid extensions of de novo motif detection algorithms 
Hendrik Mehlhorn 1, Ivo Grosse 2  
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Martin–Luther–Universitaet Halle–Wittenberg, Germany 

Abstract 
The detection of cis-regulatory modules (CRMs) is of central importance for many branches of 

molecular biology . One of the most powerful algorithms solving this problem is the Centroid 

Gibbs Sampler which is based on a realistic promoter model, information from phylogenetic 

footprinting, and the concept of predicting the centroid solution rather than the maximum a 

posteriori solution. To evaluate the idea of centroids we apply it to other stochastic algorithms. 

This and the variation of further computational properties leads to nine novel algorithms for the 

detection of CRMs. We compare the prediction quality of these algorithms to that of four common 

algorithms by examining different data sets. We find that the centroid approach improves the 

prediction of the studied algorithms. This is evidence to suggest that the centroid approach might 

be useful in other areas of modern genomics and epigenomics. 
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Simulation of the phase decision processes of clock gene 

expressions by promoter transcriptional regulations 
Kenji Miyamoto 1  

1 Biopathway Analysis Center, Faculty of Science, Yamaguchi University, Yamaguchi, Japan 

Abstract 
So far, we have analyzed mammalian circadian clock systems by simulating and modeling these 

underlying clock gene regulation with hybrid fnctional Petri net (HFPN). The established HFPN 

model consists of six clock genes Per, Cry, Rev-Erb, Ror, Bmal, and Clock. In this model, 

BMAL/CLOCK protein activates gene transcription of Per, Cry, Rev-Erb, and Ror, but PER/CRY 

protein inhibit these genes. Therefore, the coupling of the positive regulation by BMAL/CLOCK 

and the negative regulation by PER/CRY on these genes produce self-sustained oscillations of 

mammalian circadian rhythms. However, the peaks of these gene expressions obtained from the 

constructed HFPN model are different to the results of the biological experiment. This means that 

phase relation of gene expressions cannot be determined only by the coupling of negative and  

positive regulations. 

The gene being controlled by three kinds of promoters, E-box, D-box, and RRE has been 

expressed at different time in the morning, daytime, and nighttime, respectively. So we thought 

that the gene expression phases are decided by the combination of promoters that switches gene  

transcriptional activity on and off. 

Here, we investigated the transcriptional regulation by promoters that influence to the phases of 

clock gene expressions. First, we incorporated these three type of promoters into the established 

HFPN model and simulate this HFPN model with Cell Illustrator. As a result, we confirmed that 

gene transcriptions regulated by the same promoter peaks at the same time. Furthermore, we 

examined the phases of clock gene oscillations by changing the stabilities between transcription 

factors and promoters. Then, we revealed that the increase of the stabilities between 

MAL/CLOCK and E-box produces the correct phase relations among gene oscillations in  

biological experiment. 
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The LAILAPS search engine: relevance ranking in life 

science database  
Matthias Lange 1 

1 Leibniz Institute of Plant Genetics and Crop Plant Research, Germany 

Abstract 
With the growing data available in life science databases, search engines and retrieval systems are 

common tools at the life science desktop. Hereby, not the number of query results for a data query 

matters, but the relevance does. Consequently, the extraction of information and ranking of  

thousands database entries should be addressed by algorithms and tools for bioinformatics. 

In this paper, we present the LAILAPS search engine for life science databases. The concept is a 

combination of an intuitive and slim Web user interface on top of a machine learning (ML) 

ranking system. Using an inverse text index, query terms are searched in life science databases. 

With a set of features, extracted from each database hit, ML algorithms compute user specific 

relevance scores. Using expert knowledge as training data for the ML ranking system, a reliable 

relevance ranking of database hits have been developed. The manual expert training of the 

ML-engine is complemented by a user feedback and interaction profiling system for logged-in 

users, that automatically re-trains the ML ranking engine based on the user behavior and  

application background. 

LAILAPS shows that a combination of a easy to use Web fronted, text indexing, feature extraction, 

artificial intelligence, user profiling, phrase searching, and synonym based query expansion is a 

useful approach for information retrieval in life science. LAILAPS is public available for  

SWISSPROT data at \\url{http://lailaps.ipk-gatersleben.de}. 
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LIMS lite: a system for management and search of primary 

lab data 
Matthias Klappers ¹ 

1 Leibniz Institute of Plant Genetics and Crop Plant Research, Germany 

Abstract 
Nowadays modern scientific instituts produce a high amount of primary data in consequence of 

using high throughput technology (htpt). This primary data is processed and analyzed by 

bioinformatic software tools. The permanent and centralized storage of the primary data becomes 

a very important task. Software methods and tools are always in constant development and can 

change during the period of a project. Also the primary data are the first step of analysis and with 

that create a part of the whole process. These data must be kept to complete the chain of scientific  

evidence. 

Currently all primary data is stored on distributed and heterogenous systems without further  

description. 

We developed a tool called mph {LIMS lite}, whose primary goal is the storing, managing and 

searching of primary lab data. It is an easy to use web based user interface which allows storage of 

the data with additional freetext and controlled vocabulary tagging in a relational database in a 

hierarchical structure. This structure is based on the structural basis of the workflows in a  

scientific institute. 
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RiboNucleic acid tertiary structure comparison using graph 
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Summary 
The study of Ribose Nucleic Acid (RNA) has implications for many diseases, as well as 

deepening our understanding of evolution. Groups of RNA structures take similar forms, some of 

which indicate shared function. With the aim of addressing questions relating to RNA structural 

diversity, we have developed CORONATION (Comparison Of RibOse Nucleic Acid Tertiary’s 

Involving Overlapping Networks), an algorithm which rapidly finds similarities between RNA 

tertiary structures. CORONATION works by creating graphtheoretic descriptions of geometrical 

patterns within each RNA structure. It identifies 3D arrangements of bases shared between 

different structures through searching for cliques in a graph of the overlap between the two 

structures’ graphs. CORONATION is efficient, fast and its performance has been successfully 

tested on many RNA structures. This is beneficial for structure comparison and for gaining insight  

into structure-function relationships. 

1. Introduction 
Comparing motifs within structures that have common properties is a frequent problem in RNA 

research. Such RNA structures include the primary structure, the linear sequence of nucleotide 

bases. The secondary structure of RNA is usually defined in terms of hydrogen bonds between 

bases and there has been a significant amount of bioinformatics research directed at the RNA 

secondary structure prediction and comparison problem [1, 2]. However, the functional form of 

RNA molecules frequently require a specific tertiary structure. This paper describes a new  

approach to comparing tertiary similarities between known RNA structures. 

A variety of computational procedures have already been applied to the problem of tertiary 

structural comparisons. In PRIMOS [3] each nucleotide is represented by two pseudo-torsion 

angles (η and θ) and a whole structure as a sequence of η-θ values, which was called an RNA 

worm. PRIMOS detects structural differences between molecules with the same number of 

nucleotides by comparing their worms. It is mainly suitable for examining different conformations 
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of the same molecule and searching structures for a specified continuous motif. Another method 

NASSAM [4] is a graph theoretic method that searches nucleic acid structures for a given 3D 

pattern. It represents each base by two vectors and a whole nucleic acid structure as a labelled 

graph, in which the nodes are the vector representations of the bases and the edges are the 

distances between them. After representation of the given 3D pattern and the structure to be 

searched as graph, the exponential-time Ullman algorithm for subgraph isomorphism is used to x 

approach to comparing tertiary similarities between known RNA structures. 

Both PRIMOS and NASSAM are useful motif searching methods, but they are unsuitable for 

detecting new motifs that are not specified in advance. To partially overcome this limitation, the 

COMPADRES method [5] employs PRIMOS’s worm representation and searches structures for 

new motifs consisting of at least five continuous nucleotides. Specially, for a given dataset of 

RNA structures, COMPADRES generates an RNA worm representation for the entire dataset by 

concatenating the worms of all chains. The resulting worm is then plotted against itself so that the 

η and θ values of each nucleotide are compared to those of the other nucleotide. Finally, the plot is 

scanned and all diagonals with at least five continuous matches of nucleotides are considered as 

new motif candidates. The limitation for their method is that discovered motifs are restricted to be  

sequential. 

Databases are now being developed in order to aid the structural classification of RNA. Within 

SCOR [6], RNAs are dissected into structural elements and all examples of structures containing 

specific structural elements may be easily traced. A new classification database of RNA tertiary 

structures, DARTS [7], clusters RNA structures mainly on the basis of their global resemblances. 

The classification of structures is hierarchical, and helps to reveal the current structural repertoire 

of RNA, exposing common global folds and local tertiary motifs. DARTS also enables  

comparison between newly determined RNA structures and structures previously classified. 

This present paper is focused on comparing tertiary similarities between known RNA structures. A 

particularly important application is the ability to compare the largest common geometric 

arrangement of nucleotides in different RNA structures. We describe an algorithm, 

CORONATION, aimed at searching for 3D patterns of bases, taking advantage of existing 

databases of RNA structures. In particular, we compare structures using a graph-theoretic 

description of their 3D geometry. CORONATION is based on a similar methodology to that of 

GRATH [8], which built on earlier algorithms to classify structures [4]. The advantage of this 

methodology is that it works without initial assumption about what structural motifs might be in  

common, and it does not require the similarities to be sequential. 
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2. Method 
2.1 Transforming a RNA structure into a graph 
A graph is a set of objects called points, nodes or vertices, connected by links called lines or edges. 

A graph describes both the layout of the network and how parts of the network interact with each 

other. [8, 9] described how biomolecular structures can be transformed into graphs. In these 

methods [8, 9, 10], a vector passing along the axis of a protein secondary structure is assigned to a 

node, and the geometric relationships between pairs of vectors, that is the distance and angles,  

define the edges of the graph. 

CORONATION transforms a RNA tertiary structure into a graph through assigning nodes to be a 

vector through each nucleotide. A nucleotide in RNA (Figure 1) is built from three basic 

components: ribose, phosphate, one of the four nitrogenous bases, with the bases attached to the 

C1′ atom of each ribose via a glycosidic linkage. These nitrogenous bases are either purine 

derivatives (guanine and adenine) or pyrimidine derivatives (cytosine and uracil), and so differ in 

their atomic components. However, the sugar-phosphate backbone of RNA always contains main 

atoms (P,O5′,C5′,C4′,C3′,O3′), and these can be used to define a frame of reference for each 

nucleotide. In CORONATION, we assign a vector to run from the O5′ atom to the C5′ atom in 

each nucleotide. The x, y and z coordinates for each atom are obtained from the Protein Data Bank  

(PDB) file [11]. 

 

 
Figure 1: RNA Nucleotide Structure labelling the sugar phosphate backbone with the structure of the base 

(BASE), varying; where O3P exists at 5’ end. 

CORONATION labels the edges of the graph, each of which runs between two nodes which 

correspond to base vectors, by geometric measures. In the CORONATION representation, similar 

to that of GRATH, the distance is chosen to be that between the two mid-points of each of the 

vectors. The angle theta θ between two vectors, A and B, is formed from taking the dot product 

angle, [8], and is defined to be between 0° and 180°. But in order to describe the shape in three 
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dimensions another angle is required. Each vector (A or B) and their midpoint vector m creates a 

plane. The vectors A×m and B×m are perpendicular to their respective planes. We can create an  

angle, the dihedral angle, from the dot product angle between A×m and B×m, (Figure 2a). 

By considering all the pairwise relationships between each of the nucleotides in the structure, we 

can transform a tertiary structure into a fully connected graph. Such a graph gives us the geometric 

relationship between pairs of vectors of atoms and their relevant bases. This graph representation  

can also be considered as a matrix. 

2.2 Comparison of RNA structures 
CORONATION works by generating a sequence of matrices to compare a pair of structures, each 

with their molecular sequences n1n2n3...nN and m1m2m3...mM, where N, M are the number of 

bases in the two structures. The first matrix in Table 1, called the SEQ(sequences) matrix of two 

RNA molecules, contains information about the matches in the types of their bases between two 

RNA molecules. In this example, the first structure has six bases and the second structure has five 

bases, so the 2D-matrix contains six columns and five rows. The matrix contains eleven matches, 

e.g. position (1, 2) has guanine (G) in structure one and a guanine (G) in structure two, as seen in 

their corresponding row and column. There are 19 mismatches, e.g position (3, 3) has cytosine (C) 

in structure one and adenine (A) in structure two. We have used consecutive numbers in the 

matrix starting from 1 and onwards to order these matches, e.g. position (1, 2) is assigned match  

two and position (3, 6) is assigned match seven. 

 

(a)  
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(b)  
 

Figure 2: (a): The dot product angle theta and torsion angle are calculated where the midpoint vectors and 

their perpendicular vectors which give us the idea of dihedral angle Phi; (b): A graph of three RNA 

structures where nodes are vectorial representation of the axis through each structure. Node represents 

bases and edges between vectorsA and B which are labelled by: the distance, dAB; the dot product angle, 

θAB; the dihedral angle,φAB. 

The second matrix in Table 2, called as the correspondence matrix, gives us information about the 

allowable relationships between pairs of bases, which may correspond to common geometric 

pairings in both graphs. The matrix is completed by studying pairs of matches in the SEQ matrix, 

table 1. As an example, position (1, 7) in the correspondence matrix results from comparing bases  

one and six in structure one and comparing bases one and three in structure two. 

A RNA sequence runs from 5′ to 3′ end, and so this means that many pairs of points in the 

correspondence matrix can be ignored. In SEQ matrix for example the match pairing (3, 5) can be 

ignored because it corresponds to moving backward in structure one, from base five to base two, 

but forwards in structure two, from base one to base two. Because of these topological constraints 

the correspondence matrix is anti-symmetric, meaning only the upper right part of the matrix is 

available for matches. Further conditions can be imposed on the positions allowable in the 

correspondence matrix because only different bases are compared in the two RNAs. So the match 

pairing (1, 2) can be ignored in the correspondence matrix because this corresponds to comparing 

two bases in graph one but only one base in graph two. Similarly, we can ignore the match pairing  

(4, 9) in the correspondence matrix. 
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Table 1: The Sequence matrix (SEQ) 

Two graphs, which have same structure are said to have ”isomorphic” structure, i.e. if there is a 

correspondence or mapping between the nodes of graph G and graph H such that adjacent pairs of 

nodes in G are mapped to adjacent pairs of nodes in H [9, 12]. In the case of RNA, the edges of 

the graph represented the relative geometries between pairs of bases. Any RNA graphs which 

share isomorphic regions results from a geometric arrangement of bases which are common 

between two structures. In practise, the geometrical description of two RNA molecules will not be 

identical, but related RNA structures can have similar 3D arrangements, with similar distances and 

angles between corresponding vectors. An important criteria of similarity is the allowed tolerances 

in the differences between distances and angles for two structures [8]. We choose a distance 

tolerance of 2Å (angstrom), an angular tolerance for theta θ, the dot product angle, of 30°, and the  

tolerance for dihedral angle phiφto be 30°. 

The method proceeds to study positions in the correspondence matrix. Each position corresponds 

to two nodes in both the first and second RNA graphs. The edges between these two nodes have a 

distance, angle, and dihedral angle associated with them. As an example we consider position (1, 6) 

in the correspondence matrix. CORONATION checks whether the distance, angle, and dihedral 

angle between bases one (guanine) and five (guanine) in the first RNA structure are the same, 

within the tolerances, as those between bases one (guanine) and two (guanine) in the second RNA 

structure. The answer is stored in a new correspondence matrix, Table 3, with one indicating  

agreement and zero disagreement. 

 

 
Table 2: The correspondence matrix before checking tolerances 
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Table 3: The correspondence matrix after checking tolerances are met between edges of the two structures 

Each node in the correspondence matrix, Table 3, results from a shared geometric relationship, 

within some tolerances, between pairs of bases in each of the two tertiary structures being 

compared. In order to find common motifs shared between the two RNAs it is necessary to find 

cliques, that is matching subgraphs, in the correspondence matrix. A clique is a sub graph of a 

graph in which every node is connected to every other node, Figure 3. Any clique discovered 

corresponds to a set of bases in structure one, between which the geometry in terms of distance 

and angles, correspond to a set of bases in structure two. The nodes in the correspondence matrix  

within the clique map to pairs of bases in each of the structures, as stored in Table 1. 

As an example, Table-3 indicates there is a clique of size three between the nodes 1, 5 and 11, i.e. 

we have found one (agreement) in each of the elements (1,5), (1,11) and (5,11). An examination 

of Table 1 reveals that bases one, two and five in structure one, have the same geometry, within x 

constraints in common. 

The number of edges, Ne, in a clique of size C is Ne = C(C−1) /2 . If we need to satisfy P 

constraints per edge then the total number of constraints will be Nc = P×C×(C−1)/2 . As we have 

three constraints, a distance and two angles, so an overlap clique of three means there are nine  

constraints in common. 
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Figure 3: This graph gives us a maximal clique of size three out of six nodes (1,2,5). 

For finding a clique in a graph means to examine each subgraph with at least k vertices and check 

to see if it forms a clique. The GRATH algorithm used the clique detection technique of [13]. 

However, this algorithm is not optimised to search for cliques in very sparse matrices, as is the 

case here. So instead, CORONATION uses Cliquer [14]. This can search for the maximum 

cliques or cliques whose size is within the range, optionally limiting the search to maximal  

cliques. 

 

 

 

 

 

Figure 4: Two RNA structures comparison of nucleotide bases which are embossed on each other. There is 

slight difference which gives us the idea that there is an error which has been occurred because of threshold 

range values in the length, theta and phi. 

2.3 Visual Structure comparison tool 
Our procedure for analysing RNA structures begins with a detailed structural comparison of all 

nucleotides in their structures to identify characteristic and variable structural features. The results 

can be viewed by using Rasmol [15] which is a powerful tool to view 3D appearances of the PDB 

files. By comparing the two structures we can see how the structures resemble each other (Figure 
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4). There will be differences in the coordinates of two structures. But these will be sufficiently 

small to result in the geometric distance and angles between pairs of vectors being less than the  

thresholds set in CORONATION when generating the correspondence matrix. 

3. Results 
3.1 PDB data and Structural analysis 
The Protein Data Bank (PDB) [11] contains information about the 3D structures of large 

biological molecules, primarily proteins and nucleic acids. The PDB contained over 50,000 such 

structures of macromolecules in 2008, with RNA featuring in 4% of these structures. The RNA 

structures vary in size, from those with just a few nucleotides to those with many hundreds. We 

have begun to use CORONATION to identify the structural similarities between each of these 

structures. Typically we find that each comparison produces several maximal cliques, but that 

these cliques have many common bases of nucleotides. We identify the largest number of 

common bases of nucleotides, and call this the common clique. As an example, we compare the 

structure of PDB:1ehz [16], a phenylalanine tRNA, against 963 RNA structures, Figure 5. Figure 

5, shows the majority of structures have a common clique of ten bases or less, but there are some 

structures show much greater similarity. We are presently exploring how best to analyse the 

statistics of these structural similarities, and to identify whether any unusually significant matches  

between structures relate to common functions. 

 
Figure 5: A comparison of the structure 1ehz with 963 other RNA structures. When there are more than 

one example of a maximal clique, the common clique is that which contains the largest number of bases 

shared between the cliques. 

Conclusion 
We have described CORONATION, a novelmethod for detecting common substructures shared 

between RNA tertiary structures. For each structure we transform its PDB-formatted file into a 

graph, in which the nodes corresponds to a vector running from O5′ to C5′ for each nucleotide, 
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and the edges are labelled by the midpoint distance, dot-product angle and dihedral angle between 

the two vectors. CORONATION generates an overlap graph in order to find cliques, which  

correspond to shared geometric arrangements between groups of bases in the two structures. 

CORONATION is highly efficient and fully automated, and a typical comparison of two RNA 

molecules takes only a few seconds on a standard PC. The method can be readily scaled to 

perform an all-against-all comparison of all the RNA 3D structures currently available in the PDB.  

CORONATION has been developed in C and PERL. 
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Summary 

Only a few percentage of known protein structures have shown knotted configurations in their 

native fold. Still the functions of these configurations are not understood. Protein knot localization 

has become possible in single molecule experiments. Here, we investigate peptide knot 

characteristics in detail with the amino acid indices hydrophobicity and isoelectric point which 

have crucial role in retaining the stability of proteins.Water capture and release is found to be 

controllable by the tightening force in knots. In this work we analysed protein sequences having 

knotted core with the help of Fourier analysis. The set of knot proteins from proteinKNOT web  

server(pKNOT ) has been used for the experimentation. 

1. Introduction 
In mathematics, knots are closed curves and usually categorized according to the minimal number 

of crossings in a projection onto a plane. There are  several algorithms, like the Alexander 

polynomial or the Homfly polynomial, which are able to distinguish between knots. Knots are rare 

though the reason is not well understood. It has been hypothesized that knotted structures are 

difficult to fold[1] and would essentially preserve their unknotted state after the initial collapse.  

The presence of a knot may alter the enzymatic activity of the protein. 

1.1 Knots in protein: 
Though we now know the structures of a large number of proteins, only a few have knotted 

structures. The knotted regions have been shown to be important in both ligand binding and 

enzyme activity. Knotted proteins have become more common in recent years  due to the 

enormously growing number of structures deposited in the Protein Data Bank (PDB). Real 

proteins do not have their termini joined. This presents a technical problem, as knots are only 

properly (mathematically) defined in circular strings. However, one common definition of a knot 

is "a loop in a string that tightens when pulled". This can be applied to a protein by repeatedly 

smoothing while keeping the two termini fixed in place and seeing if a straight line is obtained. 

Using this method, the ends can also be progressively trimmed to find the exact location of the  
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knotted core. Protein knots can be quantified by the number of residues on either side of them[2]. 

1.2 Identifying knots in protein: 
The first web server to detect the knots in proteins as well as provide information on knotted 

proteins in PDB is the proteinKNOT(pKNOT) web server[3]. The pKNOT web server detects the 

knot in a protein by smoothing the protein chain using the Taylor’s algorithm[1]. The algorithm 

first fixes both N and C termini in space, then repeatedly smoothes and straightens the protein 

chain. The chain is reduced in such a way that, with details of the chains eliminated, the knot can 

be easily detected. If the protein does not contain a knot, the chain will simply shrink into a  

straight line. 

2. Materials and Methods 
2.1 Biosequence Processing using Digital Signal Processing 
For the structural and functional study of biosequences, spectral analysis has been used to detect 

latent periodicities of biological sequences. The spectral analysis are largely based on Fourier 

transform which can  reveal long range periodicities. When the window length is chosen 

appropriately for the STFT,  the information related to a protein's biological properties for the  

chosen protein example could be explored[4]. 

In Genomic Signal Processing, DNA sequences are mapped into digital signals in a variety of 

ways thereby enabling the use of digital signal processing, a popular tool in engineering field, to 

study the biosequences. For a DNA string x[n] of N characters (with alphabets A, G, C & T), the  

four binary indicator sequences uA[n], uG[n], uC[n], & uT[n] can be defined as follows: 

Let the DNA sequence be x[n] = [ A G T C G A T G C A T C ] . The indicator sequences are,  

uA[n] = [ 1 0 0 0 0 1 0 0 0 1 0 0], 

uG[n] = [ 0 1 0 0 1 0 0 1 0 0 0 0], 

uC[n] = [ 0 0 0 1 0 0 0 0 1 0 0 1] and 

uT[n] = [ 0 0 1 0 0 0 1 0 0 0 1 0]. 

(i.e. each indicator sequence has a 1 if the corresponding base exists at the position ‘n’, otherwise  

a 0) The sum of all binary indicators at any position n is 1 for all n. 

i.e. uA[n] + uG[n] + uC[n] + uT[n] = 1 for n=0, 1, 2,....N-1.   

Let UA[k], UG[k], UC[k] and UT[k] be the Discrete Fourier Transforms (DFT) of the binary  

sequences uA[n], uG[n], uC[n] & uT[n] respectively. The power spectrum of x[n] is given by 

R[k] =Σ|UX[k] |
2 

for X=A, G, C or T  &  k = 0, 1, 2, … (N-1). 

77 
 



This power spectrum approach is used to locate exons by the special feature of showing period 

three peak in the power spectrum of the exon regions [4]. This well established method has been 

improved with the help of electron ion interaction pseudo potential (EIIP) [5]. Instead of using the 

four indicator sequences to find the power spectrum, a numeric sequence formed by the 

substitution of the EIIP values for A, G, C & T in a DNA string is used. This numerical sequence 

represents the distribution of the free electrons’ energies along the DNA sequence. This sequence 

is named as the ‘EIIP indicator sequence’. It has been reported that EIIP as a physico chemical 

parameter is meaningful in revealing coding regions of genomic signals in a better way than the 

four indicator sequences[5]. The experimentation with EIIP indicator sequence has given high 

discrimination between coding and non-coding regions. Also this method is used to find false 

exons. i.e. introns showing period three peak behavior like exon regions.  The power spectrum 

method is applicable to amino acid sequences too. Resonent Recognition Model(RRM) analysis 

involves converting the amino acids that constitute a protein into a “discrete time series.” The 

position of an amino acid in the sequence can be thought of as the time. The datum associated 

with each time in our study is hydrophobicity which is a measure of an amino acid’s tendency to 

avoid water. After the conversion of the amino acid sequence into a numeric sequence based on 

hydrophobicity,it is made into the protein time (space) series signal (which we call a “AA signal”), 

which is analyzed to locate the dominant frequencies. It has been shown that a particular function 

in a protein is represented by one RRM characteristic frequency that can be determined by Fourier 

analysis [6]. There exists a significant correlation between the spectra of numerical representations 

of amino acids and their biological activity [6]. More specifically, the biological function of a 

protein is characterized by certain frequencies of its signal representation. In this study, we  

consider the AA signal which are used to analyse the Knot feature is then. 

2.2 Analysis of Knots: 
For the present work, we have used the published knot proteins from pKNOT webserver. These 

are of trefoil knot which is the simplest knot of all, and is characterized by three crossings. It is 

mathematically denoted as 31 knot. The proteins with a trefoil knot are methyltransferase, 

transcarbamylase, methionine adenosyltransferase, carbonic anhydrase and YMPa superantigen 

(NMR). In Table 1, ‘‘Species” refers to the scientific name of the organism from which the protein 

was taken for structure determination. ‘‘PDB code’’ give Protein Data Bank entry for each knotted 

protein. “Knotted core” of a knot is the minimum configuration which stays knotted after a series 

of deletions from each terminus(in brackets we indicate how many amino acids can be removed 

from either side before the structure becomes unknotted). Table 2 gives the amino acid index value 

of hydrophobicity by which we made the digital signals for experimentation. In some studies ,the 

statistical analysis of knotted structures shows a higher occurrence for Leu, Phe, Trp, Gly, His,  
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Gln,Asp, Lys and Pro[7]. 

Table 1. Knotted core of Organisms 

Species 
PDB 

Code 
Knotted Core

Bos Taurus 1hcb 29-256(2) 

Dunaliella salina 1lug 30-256(3) 

Rattus norv. 1v9e 37-270(4) 

H.sapiens 1y7w 32-270(4) 

H.sapiens 1flj 30-256(3) 

Mus musculus 1z93 28-254(9) 

Mus musculus 1znc 32-261(1) 

H.sapiens 2znc 32-246(3) 

Mus musculus 1keq 7-234(4) 

H.sapiens 1jd0 28-257(3) 

Mus musculus 1rj6 29-257(2) 

E.coli 1fug 33-260(32) 

Rattus norv. 1qm4 30-253(29) 

Spinacia oleracea 1yve 239-451(62) 

E.coli 1yrl 220-435(52) 

B.fregilis 1js1 169-267(57) 

X.campestris 1yh1 171-272(62) 

Species 
PDB 

Code 
Knotted Core

 E.coli 1ns5 69-121(32) 

T.maritime 1o6d 68-117(30) 

S.aureus 1vh0 73-126(31) 

B.subtilis 1to0 64-116(32) 

H.influenza 1uaj 93-138(92) 

E.coli 1p9p 90-130(89) 

T.thermophilus 1v2x 96-140(51) 

E.coli 1j85 77-114(42) 

A.aeolicus 1ipa 185-229(29) 

S.viridochromog 1gz0 172-214(28) 

H.influenza 1zjr 95-139(58) 

B.subtilis 1x7p 192-234(31) 

T.thermophilus 1nxz 165-216(30) 

A.M Thermoautotr 1vhk 158-208(27) 

N.gonorrhoeae 1v6z 103-202(25) 

H.sapiens 1k3r 48-234(28) 

H.sapiens 1kop 36-223(0) 
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Table 2.  Hydrophobicity values 

Amino 

Acid 
Hydrophobicity Amino Acid Hydrophobicity 

Ala(A) 0.13134 Leu (L) 0.05671 

Arg(R) 1 Lys (K) 0.78059 

Asn(N) 0.53134 Met (M) 0.01940 

Asp(D) 0.80597 Phe (F) 0 

Cys(C) 0.10597 Pro (P) 0.24328 

Gln(Q) 0.48805 Ser (S) 0.19402 

Glu(E) 0.74328 Thr (T) 0.15671 

Gly(G) 0.16865 Trp (W) 0.11343 

His(H) 0.41940 Tyr (Y) 0.27462 

Ile  (I) 0.03731 Val (V) 0.06865 

 

5. Results & Discussion 
In our investigation, the frequency percentage of amino acids in  knotted structures occupies a 

maximum for Leu, Gly, Asp and Val. The frequency distribution of amino acids in the knotted core 

and  the whole sequence are shown in Fig.1 and Fig. 2. The higher percentage for the above four 

amino acids is evident in Fig. 1. Amino acids are assigned positive integer values from 1 onwards 

when they are taken in alphabetic order. 

Fig 1. Freq. Distribution  in  Knotted core           Fig 2. Freq. Distribution in the whole sequences                     
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Proteins can be either positively or negatively charged based on pH conditions. When the positive 

and negative charges on protein are equal, the net charge is zero. The characteristic pH of a 

solution at which the net charge on protein is zero (positive and negative charges are equal) is 

defined as the isoelectric point. The isoelectric point of a protein is an important property because 

it is at this point that the protein is least soluble, and therefore unstable. When the isooelectric 

point of knotted core and that of the whole sequence of the data set is calculated, it was interesting 

to see that they differ only a little. So  the stability of a  knotted core measures  the stability of 

the whole protein. Fig. 3 shows the variation of isooelectric point  of the knotted core and the  

sequences from the dataset. 

 

Fig 3. Plot of Isoelectric value of knotted core and full sequence 

Hydrophobic interactions are the most important non-covalent forces that are responsible for 

different phenomena such as structure stabilization of proteins. The role of hydrophobicity is a 

determinant of protein-protein interactions. Results suggest that surface hydrophobicity can be 

used to identify regions of a protein's surface most likely to interact with a binding ligand. It is 

generally accepted that the hydrophobic effect is the main factor in stabilizing the folded structure 

of globular proteins[9,10]. The identification of knotted area of proteins is thus relevant in 

deriving these hydrophobic core of a protein. Knots contribute to thermal stability as long as they 

maintains the conformation of the folded state. 

The structural features of protein sequences is hidden in  periodicity of symbolic sequences[11]. 

The packing of the residues in a knotted core typifies the rest of the protein interior. What most 

distinguishes these regions from others is the synergism between good packing, strong hydrogen 

bonding, and the optimal interaction among peptide dipoles.Knot residues can pack very 
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Fig. 4 Spectrum of a full sequence(pdb code:1yrl)      Fig. 5 Spectrum of a knotted core(pdb code:1yrl)       

efficiently without sacrificing good hydrogen bonding[12].The protein sequences(Table1) are 

converted into numeric sequences by replacing amino acids by their respective hydrophobicity 

values(Table2). The analysis of FFT spectrum creates a special appearance for knotted region. A 

periodic pattern is observed at the knotted core as there is higher concentration of hydrophobic  

residues(Fig. 4 & Fig. 5). 

With the huge number of proteins, there is a large enough collection of folds to get a better idea of 

how frequent and important all forms of knots are to protein structure and function. The analysis  

of these should provide useful insight into how proteins fold. 

In evolutionary context, homologous structures of protein tend to retain topological features. The 

trefoil knot in carbonic anhydrase can be found in isozymes ranging from bacteria and algae to 

humans. Class II ketol-acid reductoisomerase comprises a figure-eight knot present in Escherichia 

coli and spinach, and S-adenosylmethione synthetase contains a deep trefoil knot in E. coli  and 

rat. It reveals that particular knots have indeed been preserved throughout evolution, which  

suggests a crucial role for knots in protein enzymatic activity and binding. 
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Prediction of RNA-binding sites in a protein sequence using 

concurrently conserved pattern mining 
Chen-Ming Hsu 1 
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Abstract 
The identification of RNA-binding residues (RBRs) in proteins is important in molecular 

recognition. In the absence of structures for RNA-protein complexes, it is desirable to predict 

RBRs by protein sequences alone. In this study, we present a concurrently conserved pattern 

mining approach named WildSpan to tackle this problem. It is observed that a functional site in 

protein structure usually consists of several local blocks linked with long wildcard regions and 

flexible among homologous sequences. The WildSpan is invoked to discover concurrently 

conserved patterns spanning large wildcard regions (W-patterns) in homologous sequences and 

the discovered W-patterns are used to identify RBRs in a protein sequence. We compare with the 

multiple-sequence-alignment based method (ConSurf) on a dataset of 132 RNA-binding proteins, 

WildSpan and ConSurf achieves maximum Matthews Correlation Coefficients (MCC) of 0.309 

and 0.224, respectively. The performance of WildSpan further improved the MCC from 0.309 to 

0.323, when the information of interface propensities has integrated into the WildSpan. Besides, 

the predicting power of WildSpan using all of discovered W-patterns achieves a MCC of 0.214, 

which is also better than an optimal MCC of 0.206 predicted by the structure-based Naive Bayes 

classifier (RNABindR). Further analysis for discovered W-patterns, there are about 70% of 

concurrently conserved blocks in a W-pattern are observed to be clustered in space and about 80% 

are found to be near the RNA-binding interfaces within a 5 anstron distance. Conclusively, the 

ef f ic iency of  sequence-based  WildSpan  is  not  only  favorable  in  predic t ing 

complex-structure-unknow protein but also largely desired in large-scale proteomics. 
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Abstract 
Proteins are large, complex molecules that play many critical roles in the body. If the proteins 

have similar sequences, as they share common ancestor then the proteins will have similar 

three-dimensional structures, so they infer the functional relationship. It often becomes necessary 

to compare the similarity of a model of a protein with that of the predicted model to optimize the 

functional performance. The most critical method to find similarity is to measure the Root Mean 

Square Distance (RMSD). However a single measure cannot evaluate the similarity between two 

structures, it also involves many other measures such as obtaining C-Alpha matches from the tool 

C-Alpha Matcher, performing superimposition from Swiss PDB viewer, getting an optimal 

superposition from Superpose tool and obtaining LG score from MaxSub and tools to build and 

visualize the protein structural models. In view of the importance, protein quality analyzer tool is 

constructed using Html and java script linked to many online tools. This enables quickly access to 

find the similarity between two structures and get results of the desired protein’s structure quality. 

The tool is effective and is accurate because of its integration of many tools, which are necessary 

to find the quality of protein structure. 
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Establishment of promoter sequences and annotations 

database 
Yong, Li 1 

1 College of Life Sciences Northeast Agricultural University, Harbin, China 

Abstract 
Gene expression regulation is an important research field, especially to understand gene 

tissue-specific expression, inducible expression and so on. And these are the keys of organism 

grow and develop orderly. To understand gene expression regulation, many cis-acting elements 

were found and studied, but how they work, how they co-operate to make promoter tissue-specific 

or inducible, are still unknown, mainly because of lack of annotated promoter sequences. 

To collect promoters from GenBank and annotate them, a perl script was written based on BioPerl. 

It could retrieve DNA sequences containing promoter from GenBank, and find promoter, 

transcription start site (TSS), translation initiation site (TIS) according to sequence features, and 

find expression specification according to sequence annotations. Using this script, plant promoters 

were retrieved from GenBank and annotated. Then every promoter was outputted into a GenBank 

format file. Finally all found promoters were put into a database constructed with MySQL based 

on BioSQL schemas. 

This database contains 5744 promoter sequences, 2821 TSS and 2623 TIS. Of these promoters, 

338 were tissue-specific or inducible, including cold-, salt-, wound, auxin-, ethylene-inducible, 

and root-, fruit-, anther-, seed-, pod-specific. The web interface of this database is coming soon. 
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Identification of SNPs by 454 sequencing and convertion of 

CAPS markers in soybean 
Yong, Li 1 

1 College of Life Sciences Northeast Agricultural University, Harbin, China 

Abstract 
To discover new SNPs and develop easy assay method in soybean, we have compared the 

high-through sequences of variety Asgrow A3237 with the whole genome sequences of Williams 

82. 3899 SNPs were identified between two genotypes, the most mutations were transitions, such 

as A→G and C→T, which would influence the genes expression by methylation. The SNPs were 

widely distributed in the soybean genome, targeting numerous genes involved in various 

physiological and biochemical processes influencing important agronomic traits of soybean. A set 

of 36 SNPs displayed as potential CAPS candidate were resequenced, and 16 SNPs were validated 

in the nine soybean varieties, and seven SNPs were converted into CAPS. The novel SNPs 

discovery and CAPS markers convertion system developed in this study was fast and cost 

effective for identification and application of SNPs, and holds great promise for molecular assisted  

breeding of soybean. 

87 
 



A multi-level model accounting for the effects of 

JAK2-STAT5 signal modulation in Erythropoiesis 
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Rostock, Ulmen Str.69, Haus 3, 3.OG, Raum 401, 18057 Rostock, Germany 

Abstract 
We develop a multi-level model, using ordinary differential equations, based on quantitative 

experimental data, accounting for murine erythropoiesis. At the sub-cellular level, the model 

includes a description of the regulation of red blood cell differentiation through Epo-stimulated 

JAK2-STAT5 signalling activation, while at the cell population level the model describes the 

dynamics of (STAT5-mediated) red blood cell differentiation from their progenitors. Furthermore, 

the model includes equations depicting the hypoxia-mediated regulation of hormone 

erythropoietin blood levels. Take all together, the model constitutes a multi-level, feedback 

loop-regulated biological system, involving processes in different organs and at different 

organisational levels. 

We use our model to investigate the effect of deregulation in the proteins involved in the 

JAK2-STAT5 signalling pathway in red blood cells. Our analysis results suggest that 

down-regulation in any of the three signalling system components affects the hematocrit level in 

an individual considerably. In addition, our analysis predicts that exogenous Epo injection (an 

already existing treatment for several blood diseases) may compensate the effects of single 

down-regulation of Epo hormone level, STAT5 or EpoR/JAK2 expression level, and that it may 

be insufficient to counterpart a combined down-regulation of all the elements in the JAK2-STAT5 

signalling cascade. 

88 
 

http://www.informatik.uni-rostock.de/
http://www.uni-rostock.de/
http://www.uni-rostock.de/


Simulation analysis of the enzyme expression patterns in 

E.coli towards the understanding of biological systems 
Tomoaki, Yamamotoya 1 

1 Biopathway Analysis Center, Faculty of Science, Yamaguchi University, Yamaguchi, Japan 

Abstract 
Metabolism is the system constituted by many enzymic reactions, maintaining the activity of a 

living organism. Until now, individual functions of genes and these products related to the 

metabolism have been analyzed. However, the whole mechanism of metabolism can not be  

uncovered with only the studies of these individual functions. 

Computer simulation allows us to integrate these individual functions, leading us to the complete 

understanding of the metabolism. Therefore, we have tried to construct a computational model of 

E.coli metabolic pathways with the data obtained from biological experiments. At the beginning, 

we constructed a framework model of the central metabolism with hybrid functional Petri net 

based on the structural information of metabolic pathways presented in KEGG and Ecocyc 

databases. The next task should be to incorporate kinetic parameters of enzyme expressions into 

that framework model.Then, we made biological experiments using Flow Cite Meter with GFP 

fusion strain to obtain time course data of enzymic expressions. 

Further, in order to acquire more various information of metabolic pathways, we conducted a 

biological experiment in which a carbon source was changed from glucose to mannose. Based on 

the provided experimental results, by using Cell Illustrator, we constructed a computational model 

and analyzed the enzyme expression patterns which are different between the glucose and 

mannose cultures in terms of rates of enzymic productions. This analysis implies that this 

difference is caused by a transcription factor that controls the productions of some specific 

enzymes. 
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Experimentation and evaluation of SOM-based classification 

of cancer cells with the information of proteins 
Maya, Tachibana 1 

1 Biopathway Analysis Center, Faculty of Science, Yamaguchi University, Yamaguchi, Japan 

Abstract 
Cancer cells are different in progress speed and in the effect of the therapeutic drug even if we 

extracted cancer cells from the same part. Therefore it tend not to be correct that a classification 

method of cancer cells depend on a morphologic characteristic. A study to characterize cancer 

cells in molecular levels has been performed with a laser scanning cytometer (LSC). Although 

some studies that tried to classify cancer cells with protein amount and cohesion level in cancer 

cells are performed, effective method is still unavailable. Hence, we have been developing a 

classification method of cancer cells that depend on a correlation between protein amount and 

cohesion level in cancer cells by using self-organizing map (SOM). 

In this context, we checked relation of this correlation to the mapped-location of a protein by 

SOM and found that cancer cells of the similar correlations locate at the near positions in SOM. 

Based on this fact, we conducted this SOM-based classification of cancer cells on 20 proteins, 

confirming that SOM has a possibility to extract the features of a cancer cell with respect to the 

protein amount and the cohesion level. 
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Prediction Method of Essential Points in a Biological 

Pathway for Cell System Stability by using Recurrent 

Neural Network 
Hironori Kitakaze 1 

1 Biopathway Analysis Center, Faculty of Science, Yamaguchi University, Yamaguchi, Japan 

Abstract 
Hybrid functional Petri net (HFPN) was proposed as a method for the modeling of biological 

pathways. This method can adopt appropriate functions to continuous and discrete events in a 

biological pathway, and can model any biological pathway without loosing the relation of the 

connection of substances and reactions, which is usually depicted by a figure in the literature. 

Sequential deletion of HFPN elements, which corresponds to the operation in a biological 

experiment such as gene knockout, enables the essential point prediction. That is, by repeating 

these deleting operations in the HFPN model, we can identify essential points in the cell system. 

However, the time for simulation and the time for the effect confirmation of the deleted element 

would increase as the size of a biological pathway become larger. 

In this poster presentation, we propose a computational method using recurrent neural network 

(RNN) that predicts essential points in a cell system. RNN is a neural network that reflects the 

development of time in the network. The procedures that convert a given HFPN to the RNN and 

predict essential points in an HFPN from the converted RNN are presented. Although the learning 

process of BPTT (back propagation through time) method in the RNN takes a long time, it was 

confirmed that the proposed method can produce the prediction result of essential points totally 

faster than the conventional method using the HFPN. 
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