


Lecture Notes in Computer Science 2054
Edited by G. Goos, J. Hartmanis and J. van Leeuwen



3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo



Anne Condon Grzegorz Rozenberg (Eds.)

DNA Computing

6th International Workshop on DNA-Based Computers, DNA 2000
Leiden, The Netherlands, June 13-17, 2000
Revised Papers

1 3



Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Anne Condon
University of British Columbia
Department of Computer Science
201-2366 Main Mall
Vancouver, B.C., Canada V6T 1Z4
E-mail: condon@cs.ubc.ca

Grzegorz Rozenberg
Leiden University
Leiden Institute of Advanced Computer Science (LIACS)
Niels Bohrweg 1
2333 CA Leiden, The Netherlands
E-mail: rozenberg@liacs.nl

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

DNA computing : revised papers / 6th International Workshop on DNA
Based Computers, DNA 2000, Leiden, The Netherlands, June 13 - 17,
2000. Anne Condon ; Grzegorz Rozenberg (ed.). - Berlin ; Heidelberg ;
New York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ;
Singapore ; Tokyo : Springer, 2001

(Lecture notes in computer science ; 2054)
ISBN 3-540-42076-2

CR Subject Classification (1998): F.1, F.2.2, I.2.9, J.3

ISSN 0302-9743
ISBN 3-540-42076-2 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP Berlin, Stefan Sossna
Printed on acid-free paper SPIN 10781535 06/3142 5 4 3 2 1 0



Preface

The papers in this volume were presented at the 6th International Meeting on
DNA Based Computers, organized by the Leiden Center for Natural Computing
and held from June 13 to June 17, 2000 at The Lorentz Center, University of
Leiden, Leiden, The Netherlands. DNA Computing is a novel and fascinating
development at the interface of computer science and molecular biology. It has
emerged in recent years, not simply as an exciting technology for information
processing, but also as a catalyst for knowledge transfer between information
processing, nanotechnology, and biology. This area of research has the potential
to change our understanding of the theory and practice of computing.

The call for papers and poster presentations sought contributions of original
research and technical expositions in all areas of bio-computation. A total of 33
abstracts were submitted of which 16 were accepted for presentation and included
in the proceedings. The papers were selected by the program committee based on
originality and quality of research and on relevance to the bio-computing field.
Invited talks were given by Masami Hagiya (Tokyo University), Laura Land-
weber (Princeton University), John Reif (Duke University), Thomas Schmidt
(Leiden University), and Lloyd M. Smith (University of Wisconsin). Invited pa-
pers based on the talks by Hagiya and Reif are included in this volume, along
with the contributed papers. Additional tutorials were held on the first and last
days of the conference.

The conference was held under the auspices of the ACM Special Interest
Group on Algorithms and Computation Theory (ACM SIGACT) and the Eu-
ropean Association for Theoretical Computer Science (EATCS). We gratefully
acknowledge support and sponsorship from the following organizations: the Eu-
ropean Molecular Computing Consortium (EMCC), the European Commission
(EC) Institute for Programming research and Algorithmics (IPA), the Leiden
Institute of Advanced Computer Science (LIACS), the Lorentz Visitor Center
(LC), and the Netherlands Organization for Scientific Research (NWO).

The program committee wishes to thank all those who submitted papers for
consideration.

March 2001 Anne Condon
Program Chair



Organization

Program Committee

M Amos Univ. Liverpool, UK
J. Chen Univ. Delaware, USA
A. Condon Univ. British Columbia, Canada

(Program Chair)
T. Head Binghamton Univ., USA
N. Jonoska Univ. South Florida, USA
L. Landweber Princeton Univ., USA
G. Paun Romanian Acad., Romania
G. Rozenberg Univ. Leiden, The Netherlands
A. Suyama Univ. Tokyo, Japan
E. Winfree Caltech, USA
T. Yokomori Waseda Univ., Japan
B. Yurke Lucent Technologies, USA

International Organizing Committee

M Amos Univ. Liverpool, UK
A. Condon Univ. British Columbia, Canada
T. Head Binghamton Univ., USA
L. Kari Univ. Western Ontario, Canada
G. Rozenberg Univ. Leiden, The Netherlands

(Organizing Committee Chair)
H. Rubin Univ. Pennsylvania, USA
E. Winfree Caltech, USA



Table of Contents

Engineered Communications for Microbial Robotics . . . . . . . . . . . . . . . . . . . . 1
Ron Weiss and Thomas F. Knight, Jr.

Successive State Transitions with I/O Interface by Molecules . . . . . . . . . . . . 17
Ken Komiya, Kensaku Sakamoto, Hidetaka Gouzu, Shigeyuki Yokoyama,
Masanori Arita, Akio Nishikawa, and Masami Hagiya

Solution of a Satisfiability Problem on a Gel-Based DNA Computer . . . . . . 27
Ravinderjit S. Braich, Cliff Johnson, Paul W.K. Rothemund,
Darryl Hwang, Nickolas Chelyapov, and Leonard M. Adleman

Diophantine Equations and Splicing: A New Demonstration of the
Generative Capability of H Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Pierluigi Frisco

About Time-Varying Distributed H Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Maurice Margenstern and Yurii Rogozhin

String Tile Models for DNA Computing by Self-Assembly . . . . . . . . . . . . . . . 63
Erik Winfree, Tony Eng, and Grzegorz Rozenberg

From Molecular Computing to Molecular Programming . . . . . . . . . . . . . . . . . 89
Masami Hagiya

Graph Replacement Chemistry for DNA Processing . . . . . . . . . . . . . . . . . . . . 103
John S. McCaskill and Ulrich Niemann

DNA and Circular Splicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Paola Bonizzoni, Clelia De Felice, Giancarlo Mauri, and Rosalba Zizza

Molecular Computing with Generalized Homogeneous P-Systems . . . . . . . . . 130
Rudolf Freund and Franziska Freund

Computationally Inspired Biotechnologies: Improved DNA Synthesis and
Associative Search Using Error-Correcting Codes and Vector-Quantization 145

John H. Reif and Thomas H. LaBean

Challenges and Applications for Self-Assembled DNA Nanostructures . . . . 173
John H. Reif , Thomas H. LaBean, and Nadrian C. Seeman

A Space-Efficient Randomized DNA Algorithm for k-Sat . . . . . . . . . . . . . . . . 199
Kevin Chen and Vijay Ramachandran

A DNA-Based Random Walk Method for Solving k-SAT . . . . . . . . . . . . . . . . 209
Sergio Dı́az, Juan Luis Esteban, and Mitsunori Ogihara



X Table of Contents

Solving Computational Learning Problems of Boolean Formulae on DNA
Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Yasubumi Sakakibara

The Fidelity of Annealing-Ligation: A Theoretical Analysis . . . . . . . . . . . . . . 231
John A. Rose and Russell J. Deaton

DNA Implementation of a Royal Road Fitness Evaluation . . . . . . . . . . . . . . . 247
Elizabeth Goode, David Harlan Wood, and Junghuei Chen

Steady Flow Micro-Reactor Module for Pipelined DNA Computations . . . . 263
John S. McCaskill, Robert Penchovsky, Marlies Gohlke,
Jörg Ackermann, and Thomas Rücker

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271



Engineered Communications for Microbial
Robotics

Ron Weiss and Thomas F. Knight, Jr.?

M.I.T. Artificial Intelligence Laboratory, 545 Technology Square, Cambridge, MA
02139 {rweiss,tk}@ai.mit.edu

Abstract. Multicellular organisms create complex patterned structures
from identical, unreliable components. Learning how to engineer such
robust behavior is important to both an improved understanding of com-
puter science and to a better understanding of the natural developmental
process. Earlier work by our colleagues and ourselves on amorphous com-
puting demonstrates in simulation how one might build complex patter-
ned behavior in this way. This work reports on our first efforts to engineer
microbial cells to exhibit this kind of multicellular pattern directed be-
havior.
We describe a specific natural system, the Lux operon of Vibrio fischeri,
which exhibits density dependent behavior using a well characterized
set of genetic components. We have isolated, sequenced, and used these
components to engineer intercellular communication mechanisms bet-
ween living bacterial cells.
In combination with digitally controlled intracellular genetic circuits,
we believe this work allows us to begin the more difficult process of
using these communication mechanisms to perform directed engineering
of multicellular structures, using techniques such as chemical diffusion
dependent behavior. These same techniques form an essential part of
our toolkit for engineering with life, and are widely applicable in the
field of microbial robotics, with potential applications in medicine, en-
vironmental monitoring and control, engineered crop cultivation, and
molecular scale fabrication.

1 Introduction

The developmental process requires coordinated, robust action among a very
large number of essentially identical, unreliable components. In stark contrast to
current computer science engineering practice, these developmental programs are
highly fault tolerant. Imagine what would happen if any biological mechanism
exhibited the same fragility as a modern microprocessor, operating system, or
satellite.

Previous work in our group [1,3,4,24,26,29,30] has looked at some of these ro-
bustness and pattern formation issues in simulation, with intriguing results. We
? This work is supported by DARPA/ONR under grant number N00014-96-1-1228

and by NTT Corporation under grant MIT9904-010.

A. Condon (Ed.): DNA 2000, LNCS 2054, pp. 1–16, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



2 R. Weiss and T.F. Knight

found that the topic we call amorphous computing requires a different set of algo-
rithms and a different approach to thinking about structures than conventional
computer science.

But we also must better understand the developmental process in a biological
context. Although we are making significant progress, we simply do not fully
understand the pattern formation of even the simplest of biological structures.
But surely concepts from computer science, such as subroutines, divide-and-
conquer, recursion and iteration will play a major role in understanding the
genetic control of developmental diversity. Both biology and computer science
have lessons to learn from a cooperative investigation of this field.

Even simple biological systems can exhibit complex developmental processes.
The motile, gram negative bacterium Myxococcus xanthus, for example, exhibits
social behavior and cellular differentiation during cooperative feeding. The con-
trolled, density dependent, release of antibiotics and cell wall degrading enzymes
to kill competitors allows moving swarms (so-called “wolf-packs”) to act more
effectively than individuals [8]. Similarly, M. xanthus exhibits selection, during
starvation, of a small number of cells out of a swarm of 100,000 to change form
from rod-like bacteria to environmentally protected spherical myxospores. Spore
formation requires high cell density, nutrient limitation, and a solid surface [9,
20].

In this paper we undertake a biological implementation of what we believe is a
key component in building such developmental pattern engineering techniques –
cell to cell communications. Communication between cells is obviously essential
to any kind of coordinated expression. But in development, and in our amor-
phous computing simulations, one kind of communication emerges as especially
important – the ability to detect and act on chemical signal concentration gradi-
ents. Such gradient dependent expression is the building block of locally unique
behavior, as well as the organizing principle which allows the construction of
local coordinate systems through the creation and detection of chemical gradi-
ents. Such trophic behavior provides one basic organizing principle for complex
patterned development.

In this work, we have isolated a specific chemical cell to cell signaling mech-
anism from a natural biological system, the quorum sensing system of Vibrio
fischeri. This system encodes genes and promoter sequences which allow the
controlled expression of the chemical Vibrio fischeri autoinducer (VAI) within
one sender cell, and the detection and controlled expression of specific genes in
another, receiving cell. The free diffusion of the VAI chemical within the medium
and across cell membranes allows the establishment of chemical gradients and
the controlled expression of genetic circuits as a result.

Specifically, we demonstrate in this work the construction and testing of
engineered genetic circuits which exhibit the ability to send a controlled signal
from one cell, diffuse that signal through the intercellular medium, receive that
signal within an a second cell, and activate a remote transcriptional response.

In combination with other ongoing work in digitally controlled gene expres-
sion [11,16,19,23,29] this work provides components for a biological substrate for
expressing pattern formation. These same components are also a key part of our
toolkit for engineering with life, with important implications for medicine, agri-



Engineered Communications for Microbial Robotics 3

culture, environmental monitoring, and engineering – including molecular scale
manufacturing and molecular electronics.

In the remainder of this paper we describe the mechanism of quorum sensing
in bacteria (Sections 2-3), present the plasmids engineered for communications
(Section 4), report on our experimental results (Section 5), and offer conclusions
and avenues for future work (Section 6).

2 Quorum Sensing in Bacteria

Vibrio fischeri is a gram-negative bioluminescent marine prokaryote which nat-
urally occurs in two distinct environments. In seawater, it swims freely at con-
centrations of approximately ten cells per liter. It also grows naturally in a sym-
biotic relationship with a variety of invertebrate and vertebrate sea organisms,
especially the Hawaiian sepiolid squid, Euprymna scolopes and the Japanese
pinecone fish, Monocentris japonica [27]. In these symbiotic relationships, the
bacteria grow to densities of approximately 1010 cells per liter.

In the free living state, Vibrio fischeri emits essentially no light (< 0.8 pho-
tons/second/cell). In the light organ, however, the same bacteria emit more
than 800 photons/second/cell, producing very visible bioluminescence. In cul-
ture, Vibrio fischeri demonstrates a similar density dependent bioluminescence,
with induction occurring at about 1010 cells/liter.

Work over many years has established that this behavioral change is due to a
natural cell density detection mechanism, which has been termed quorum sens-
ing [15]. The quorum sensing mechanism relies on the synthesis and detection
of a very specific, species unique chemical, an autoinducer, which mediates in-
tercellular communications. In Vibrio fischeri, this autoinducer chemical (VAI)
has been identified as N-(3-oxohexanoyl)-3-amino-dihydro-2-(3H)-furanone [10].
The gene, LuxI, catalytic protein, and synthetic pathway for this chemical has
also been identified [14].

Briefly, the LuxI gene encodes an acyl-homoserine lactone synthesase which
uses highly available metabolic precursors found within most gram negative
prokaryotic bacteria – acyl-ACP from the fatty acid metabolic cycle, and S-
adenosylmethionine (SAM) from the methionine pathway – to synthesize VAI.

The Vibrio fischeri autoinducer (VAI) freely diffuses across the bacterial cell
membrane. Thus, at low cell densities, low VAI concentrations are available.
Within a light organ, or at high culture densities, VAI builds up within the
environment, resulting in a density dependent induction of bioluminescence.

The response mechanism to VAI concentration has also been extensively
analyzed [28]. Briefly, the LuxR gene codes for a two domain DNA binding
protein which interacts with VAI and the Lux box of the LuxICDABEG operon
promoter to exercise transcriptional control. At nanomolar concentrations, VAI
binds to the N terminal domain of the LuxR protein, which in turn activates
the C-terminal helix-turn-helix DNA binding domain. The LuxR protein acts as
a transcriptional activator for the RNA polymerase holoenzyme complex. The
activated protein likely binds in dimeric or multimeric forms, because of the
evident dyadic symmetry of the Lux box binding domain.

The genetic structure of the Vibrio fischeri Lux operon has been established
by the successful cloning and expression of the Lux genes into E. coli [12]. It is



4 R. Weiss and T.F. Knight

LuxR/LuxI promoter

251 bp

LuxR

LuxI

CAP/cAMP Binding Site Lux Box

LuxR transcription start

LuxICDABEG transcription start

LuxR RBS LuxI RBS

Inverted Repeat

LuxR -10

LuxICDABEG -10 region

LuxR -35

Fig. 1. LuxR and LuxI promoter regions from Vibrio fischeri.

somewhat surprising (although common) for the transfer of regulatory genes and
entire metabolic pathways to function straightforwardly across gram-negative
species boundaries in this way.

Given the potential utility of both the autoinducer control mechanism as a
cell to cell signaling mechanism, and the Lux operon as a reporter gene, we under-
took to isolate these operons and engineer their interfaces. An initial stumbling
block was the lack of complete sequence information. Remarkably, although this
system has been the subject of hundreds of papers, a complete sequence of the
operons was not available in genbank. Therefore, as first step, we undertook to
isolate the operon, completely sequence it, and deposit the resulting sequence.
That effort is described in Appendix A.

3 Genetic Features of the LuxR/LuxI Operons

The nucleotide structure of the sequenced regulatory region is shown in figure 1.
This region encodes two divergently transcribed promoters. The left operon con-
stitutively expresses the LuxR transcript, which is coded by the left ORF. This
operon has a standard σ70 binding region, consisting of a -10 and -35 sequence,
and a CRP/CAMP binding site. The CRP/CAMP binding site allows catabolic
repression on the left LuxR operon.

The right operon drives expression of the LuxICDABEG transcript, coding
for autoinducer production (LuxI) and the bioluminescence cassette of LuxCD-
ABEG. It consists of a standard -10 σ70 binding site, but is missing the -35 site.
Instead, the lux box, a 20 base inverted palindromic repeat, allows dimeric bind-
ing of the active form of LuxR binding protein, activating the RNA polymerase
holoenzyme complex, under control of the LuxR protein – and hence indirectly,
the VAI concentration.

The lux box is a common motif in regulatory proteins of the LuxR family,
and occurs upstream of many LuxR homologous genes. The sequence of the Lux
box in this construct is 5’(acctgtagga tcgtacaggt); the consensus sequence for
similar lux boxes in other constructs is [18] 5’(rnstgyaxga tnxtrcasrt)3’ (n = a,
t, g, c; x = n or gap; s = g, c; r = a, g; y = c, t).

Note that the dimeric binding of the LuxR product produces the kind of
nonlinear concentration/response behavior discussed in [19,29] and widely seen
in DNA binding protein transcriptional control. This nonlinear response is an
essential element of signal restoration and digital control of expression.



Engineered Communications for Microbial Robotics 5

The transcription of the right operon also enhances the production of LuxI,
and thus the VAI synthesase, and VAI. We see here the key component of a
Schmidt-trigger positive feedback gate – once transcription is turned, the en-
hancement is self-reinforcing, leading to hysteresis in the transfer curve.

4 Engineered Plasmid Constructs

In order to experiment with intercellular communications, we constructed a series
of plasmids, and then transformed them into E. coli cells. The plasmids can
be roughly categorized into three groups: preliminary plasmids (Section 4.1),
plasmids that enable cells to transmit the message by catalyzing the formation
of autoinducer (Section 4.2), and plasmids that enable cells to respond to the
message through the use of the appropriate region of the lux operon (Section 4.3).

4.1 Preliminary Plasmids

Initially, we constructed a series of plasmids (Figure 2) that could serve as
templates for cloning the final sender and receiver plasmids. The first plas-
mid, pRW7-1, combines the backbone of the general purpose high copy number
plasmid pUC19 with GFP(LVA) from Clontech pGFP(LVA). Both pUC19 and
pGFP(LVA) were digested with SpeI and XmaI, and the GFP(LVA) CDS and
its associated synthetic ribosome binding site (RBSII) were cloned into pUC19.
GFP(LVA) is a variant of the green fluorescent protein with a destabilizing tail
(amino acids RPAANDENYLVA) that results in a protein half life of approx-
imately 40 minutes.

Next, to produce pRW7-2, a transcription termination region (rrnB T1) based
on a sequence from pKK232-8 [25] was cloned into pRW7-1 using two oligonu-
cleotides. The oligos were annealed by incubating @97◦C for 10 minutes, then
incubating @65◦C for 15 minutes, incubating @24◦C for 15 minutes, and finally
storing @4◦C, to produce the following double stranded segment with overhangs
that match an AatII and XmaI digest:

ACCCGGGAATTCCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTC GTTTTATCTGTTGTTTGTCGGTGAACGCTCTCACCGGT
TGCATGGGCCCTTAAGGGTCCGTAGTTTATTTTGCTTTCCGAGTCAGCTTTCTGACCCGGAAAG CAAAATAGACAACAAACAGCCACTTGCGAGAGTGGCCAGGCC

The annealed oligos were then ligated into pRW7-2 digested with AatII and
XmaI. The plasmid pRW7-3, which includes the same transcription termination
region but on the 5’ end of GFP(LVA), was constructed in a similar fashion. The
oligos used have HindIII and XbaI overhangs, and were cloned into a pRW7-2
HindIII/XbaI digest.

The final preliminary plasmid pRW7-4 includes p(LAC-const), a new con-
stitutive synthetic promoter, in front of the GFP(LVA) CDS. We designed the
constitutive promoter p(LAC-const) based on the LAC promoter, as shown in
Figure 3. In p(LAC-const), the lacO and CAP binding sites have been removed,
and the -10 and -35 regions have been modified to resemble the consensus -10
and -35 regions respectively [22]. p(LAC-const) was introduced into pRW7-3 (di-
gested with AgeI/Acc65I) using a pair of oligos with AgeI and Acc65I overhangs



6 R. Weiss and T.F. Knight

pRW7-1
3327 bp

APr

GFP(LVA)

RBSII

ColE1 ORI

pRW7-2
3108 bp

APr

GFP(LVA)

RBSII

ColE1 ORI

rrnB T1

pRW7-3
3156 bp

APr

GFP(LVA)

RBSII

ColE1 ORI

rrnB T1

rrnB T1
pRW7-4
3222 bp

APr GFP(LVA)

p(LAC-const)
RBSII

ColE1 ORI

rrnB T1

rrnB T1

Fig. 2. Preliminary plasmids

1                                           60

p(LAC)    (1) GCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTAT

p(LAC-const)    (1) -----------------CCGGTTAGCGCTCTCATTAGGCACCCCAGGCTTGACACTTTAT

61                                          112

p(LAC)   (61) GCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACA

p(LAC-const)   (44) GCTTCCGGCTCGTATAATGACTGCATTTATTGGTAC----------------

lacO-10

-35CAP bs

Fig. 3. Comparison of p(LAC) with p(LAC-const)

that were annealed using the same procedure as above. The plasmid pRW7-4
was transformed into E. coli DH5α chemically competent cells. The construct
consisting of p(LAC-cons) followed by GFP(LVA) was verified by detecting the
fluorescense of the cells (data not shown).



Engineered Communications for Microbial Robotics 7

pTK1
11334 bp

APr

LuxI

LuxC

LuxD

LuxB

LuxE

LuxG

LuxA

LuxR

ORF-V

Terminator

lux P(L) transcription start

lux P(R) transcription sta

LuxR RBS

LuxI RBS

LuxD RBS

LuxA RBS

LuxB RBS
LuxE RBS

LuxG RBS

LuxC RBS

ColE1 ORI

Vibrio
fischeri

pUC19

pLux19-S1
3343 bp

APr

LuxI

P(LAC)

LuxI RBS

ColE1 ORI

pLuxI-Tet-8
2801 bp

Cm(r)
LuxI

EK Site

Myc

MCS

P(LtetO-1)

RBS

ColE1

T1

T0

pPROTet.E132

pSND-1
3052 bp

AP r

LuxI

p(LAC-const)

LuxI RBS

ColE1 ORI

rrnB T1

rrnB T1pRW7-4

Fig. 4. Sender plasmids

4.2 Senders

We isolated individual components of the Vibrio fischeri system for further use.
Plasmids described in this section are shown Figure 4. The LuxI coding region
was cloned and placed under control of the Lac promoter of the pUC19 plasmid.
This was done by pcr of the pTK1 plasmid DNA using selected primers which
included non-matching 5’ EcoRI cut sites. Specifically, we performed a pcr reac-
tion using forward primer 5’(agg↓aattcgaataaacgcaagggag)3’ and reverse primer
5’(ccg↓aattccctataatatacttag)3’, yielding the full length LuxI coding sequence,
including the ribosomal binding site, but with paired, distal EcoRI cut sites.
pcr was performed using Life Technology High Fidelity pcr Supermix (25µl ),
1µl of each primer, and 1µl of 300ng/µl pTK1 plasmid DNA. The reaction
was denatured 5 minutes @94◦C, followed by 30 cycles of denaturing 30 seconds
@94◦C, annealing 30 seconds @50◦C, and extension 1 minute @70◦C. Reaction
products were verified by gel electrophoresis, and separated from primers using
the Bio101 Geneclean spin protocol. The purified pcr product was digested with
EcoRI, and ligated with prepared pUC19 vector, which had been cut with EcoRI
and dephosphorylated with Amersham shrimp alkaline phosphatase.



8 R. Weiss and T.F. Knight

pRCV-3
4149 bp

APr

GFP(LVA)

LuxR

lux P(L)

lux P(R)

RBSII

LuxR RBS

ColE1 ORI

rrnB T1

rrnB T1

pRCV-4
4753 bp

APr

GFP(LVA)

LuxR

LuxI

lux P(R)

lux P(L)

RBSII

LuxR RBS

LuxI RBS

ColE1 ORI

rrnB T1

rrnB T1

pRW7-3 pTK1

Fig. 5. Receiver plasmids

The resulting ligation was transformed into E. coli DH5α and plated on lb
amp. The transformed colonies exhibited two distinct morphologies, clear, small
colonies and opaque, large colonies. Six of each colony morphology were streaked,
grown, and minipreped. Restriction digests and gel eletrophoresis showed that
the small colonies contained the LuxI gene in the correct, expressing, orientation.
One such clone, pLuxI19-S1 was chosen for further study.

The same EcoRI digested LuxI pcr product was also similarly cloned into
the Clonetech pPROTET.E332 plasmid. This plasmid contains a Col-E1 ori,
chlomamphenicol resistance gene, and a TetO controlled promoter. The TetO
promoter is inhibited by the TetR gene product, in the presence of the anitbiotic
tetracycline. The TetR gene is chromosomally carried in a special version of E.
coli, which also carries the spectinomycin resistance gene. As a first step, the
ligation reaction was transformed into subcloning efficiency DH5α cells, grown
up in lb chloramphenicol (50µg/ml). After verification of the correct insert,
miniprep DNA was re-transformed into the TetR containing strain, which was
then grown in lb spectinomycin chloramphenicol broth.

The PROTet system allows controlled expression of the inserted gene using
varying amounts of a non-growth-inhibitory version of tetracycline, anhydro-
tetracycline (aTc). In this way, we can control expression of the LuxI gene, and
hence the level of VAI, in these cells, through control over the aTc concentration.

The plasmid pSND-1 was constructed for constitutive expression of luxI, by
removing the GFP(LVA) CDS from pRW7-4 and replacing it with luxI from
pTK1. A pcr reaction using forward primer 5’(catgggtacctccggaataaagctttact-
tacgtac)3’ and reverse primer 5’(catgaagcttaacaacattaatttaagactgc)3’ yielded the
luxI coding sequence, including the ribosomal binding site. The pcr product was
then ligated with a pRW7-4 Acc65I/HindIII digest, and transformed into chem-
ically competent DH5α .

4.3 Receivers

The receiver plasmid pRCV-3 was constructed using pRW7-3 as the plas-
mid backbone and by inserting the luxRPLPR region from pTK1 upstream of



Engineered Communications for Microbial Robotics 9

Response to Autoinducer Messaging

0

500

1000

1500

2000

2500

0:00 0:30 1:00 1:30 2:00

Time (hrs)

F
lu

o
re

sc
en

ce pRCV-3 + pUC19
pRCV3 + pSND-1
pRCV-3
pRCV-3 + pRW-LPR-2
pRCV-3 + pTK-1 AI

Fig. 6. Verification of communication constructs

GFP(LVA). We performed a pcr reaction using forward primer 5’(catgggtac-
ctccggaataaagctttacttacgtac)3’ and reverse primer 5’(catgggtaccggccggtttattc-
gactataacaaacc)3’, yielding the luxRPLPR region with Acc65I cut sites at both
tails. The pcr product was then ligated into a pRW7-3 Acc65I digest, and the
resulting colonies were screened by restriction mapping and and partial plasmid
sequencing to ensure that the insert was in the correct orientaion.

The receiver plasmid pRCV-4 served as a control plasmid to verify the abil-
ity of the lux operon to exert positive control on the synthesis of GFP(LVA).
The luxRPLPRluxI region from pTK1 was extracted with a pcr reaction using
forward primer 5’(catgggtacctccggaataaagctttacttacgtac)3’ and reverse primer
5’(ccttggtaccggccgaacaacattaatttaagactgc)3’. As above, the pcr product was
then ligated into a pRW7-3 Acc65I digest, and the resulting colonies were
screened by restriction mapping and partial plasmid sequencing to ensure that
the insert was in the correct orientaion.

5 Intercellular Signalling Experiments

5.1 Sending a Constant Cell to Cell Signal

Our first intercellular communications experiment involved the sending of a con-
stant signal from one cell type to another. Cultures of E. coli DH5α containing
the pRCV-3 plasmid and the pSND-1 plasmids were grown separately overnight
@37◦C in lb amp. A 96 well clear bottom plate was loaded with 200µl of
lb amp in each well. 10µl of pSND-1 cells were loaded horizontally to each
cell, along with controls consisting of cells expressing GFP constitutively, E. coli
DH5α containing pUC19, and a series of wells containing extracted VAI (see
below).

Vertically, 10µl of cells containing the pRCV-3 construct were also loaded
into each well. Thus, each well contained a variety of senders, and a uniform set
of receivers. The plate was grown in a Biotek FL-600 fluorescent plate reader



10 R. Weiss and T.F. Knight

Maximum Fluorescence of pRCV-3
in Response to Different Levels of Autoinducer

0

200

400

600

800

1,000

1,200

0.1 1 10

Autoinducer Level

M
ax

im
u

m
 F

lu
o

re
sc

en
ce

Fig. 7. The effect of different autoinducer levels on the maximum fluorescence attained.

for two hours, and read for fluorescence at the GFP(LVA) peak (excitation filter
485/20 nm, emission filter 516/20 nm). The results are shown in figure 6. Wells
containing only the pRCV-3 cells, or with added pUC19 cells, showed no increase
in fluorescence. The well containing pRCV-3 cells and pRW-LPR-2 cells (which
express GFP(LVA)) served as a positive control. Wells containing the pRCV-
3 cells plus extracted pTK1 autoinducer showed high, and increasing levels of
fluorescence. Cells with pRCV-3 and pSND-1 showed the expected increase in
fluorescence demonstrating successful cell to cell signalling.

5.2 Autoinducer Extraction and Characterization of the Receiver
Module

The receiver plasmid pRCV-3 was further characterized by inducing the pro-
moter with VAI extracted from cell culture. Cultures of Vibrio fischeri and of
E. coli containing the pTK1 plasmid were grown overnight to stationary phase
in GVM broth or lb amp respectively @30◦C which allows evaluation of their
bioluminescence. After verification of light production, 100 ml of the cultures
were centrifuged at 3300 g, and the supernatant collected. The supernatant was
extracted with 10 ml of ethyl acetate by vigorous shaking in a separatory funnel
for 10 minutes. The ethyl acetate extract (upper fraction) was separated and
dried under vacuum. The resulting crude extract was redissolved in 1ml of DI
water to provide 100x VAI extract.

We performed experiments to analyze the effectiveness of serial dilutions of
the VAI extracts from pTK1 and Vibrio fischeri in inducing GFP expression
of the pRCV-3 cells. Both the Vibrio fischeri and pTK1 extracts were about
equally effective at inducing expression of the pRCV-3 promoter, as measured
by GFP production. Figure 7 shows that increasing levels of autoinducer yielded
increasing GFP expression by the receiver. High levels of the extract, however,
were toxic to the cells, and resulted in relatively low fluorescence levels.

5.3 Sending Controlled Cell to Cell Signals

Finally, we placed the LuxI gene under control of the Tet promoter from the
Clontech pPROTet system. The experiment is schematically represented in Fig-



Engineered Communications for Microbial Robotics 11

[aTc]

TetR

TetO

main
metabolism

LuxI

VAI

L
ux

R

GFP

UV
Fluorescence

“sender” “receiver”

Fig. 8. Circuit diagram of gradient communications

ure 8. In one cell, the pLuxI-Tet-8 plasmid exerts controlled expression of the
LuxI autoinducer synthesase using the Tet operon. The synthesase catalyzes the
conversion of normal cellular metabolic products into VAI; thus, controlling the
LuxI expression level controls the VAI production in the cells. The VAI produced
within the cells migrates though the cell membrane of the sender, into the cul-
ture medium, and through the membrane of the receiver – a cell containing the
pRCV-3 plasmid. There, it interacts with the N-terminal domain of the LuxR
DNA binding protein product, disabling it from binding to the lux box binding
site. The expression of the GFP reporter gene is enhanced, resulting in high
levels of fluorescence.

The experiment involved the incubation of similar mixed cell cultures on 96
well clear bottom plates. One important difference was the culture medium –
the pPROTET cells carry spectinomycin and chlormaphenicol resistance, while
the pRCV-3 cells carry ampicillin resistance. The experiments were carried out
by growing overnight cultures of both types of cells in the appropriate antibiotic
containing medium, followed by centrifugation at 4000g to remove the medium,
and resuspension to similar cell density in lb containing no antibiotics, so that
both cell types could grow.

A similar arrangement of horizontally different pLuxTet senders (different
colonies from the pPROTet/LuxI ligation reaction) and vertically similar re-
ceivers were loaded, including a set of wells containing no senders (“RCV only”)
and a set of cells containing pTK1 VAI at levels previously shown to induce high
level expression.

Figure 9 shows the results of this experiment after culturing the plate for
four hours @37◦C. As expected, the null wells showed no enhancement of fluores-
cence, while the 10x VAI positive control wells exhibited fluorescence. The three
experiments labeled LuxTet4B7, LuxTet4B8, and LuxTet4B9 include senders



12 R. Weiss and T.F. Knight

Cell to Cell digital signaling

0

50,000

100,000

10
x 

A
I

N
ul

l 2 20 20
0

2,
00

0

20
,0

00

20
0,

00
0

aTc concentration ng / ml
(10 ul added to each 225 ul well)

R
el

at
iv

e 
R

ec
ei

ve
r 

F
lu

o
re

sc
en

ce

LuxTet4B9
LuxTet4B8
LuxTet4B7
LuxTet8D4
LuxTet4D3
RCV Only

Fig. 9. The effect on the receiver of transmitting the message at different intensities

where the pLuxI-Tet-8 plasmid was transformed into BL21 − PRO cells, while
the experiments labeled LuxTet4D3 and LuxTet8D4 include senders where the
pLuxI-Tet-8 plasmid was transformed into E. coli DH5α cells.1 In wells contain-
ing sender cells induced with aTc at levels below about 20ng/ml, only a small
fluorescent response is exhibited by the receiver cells. In wells induced with aTc
levels above 200ng/ml, a significant response was observed. Sufficiently high
levels of aTc inhibited cell growth.

6 Conclusions

We have successfully isolated an important intercellular communication mech-
anism from a naturally occurring bacterial system, analyzed its components,
and engineered its interfaces with standard genetic control and reporter mech-
anisms. While we have captured one such communication mechanism, realistic
genetically controlled developmental systems will require perhaps dozens of such
signals. The LasI/LasR system from Pseudomonas aeruginosa [5], for example,
appears to encode a similar regulatory system, but one which uses a different,
and non-cross reacting autoinducer, and a different structure homologous to the
lux box. Isolation and characterization of such additional communication mech-
anisms will allow the construction of more complex multicellular systems.

A Extraction and Analysis of the Lux Operon Structure
from Natural Constructs

A stab of Vibrio fischeri MJ1 was obtained from Fotodyne, Inc. and restreaked
and grown @28◦C on GVM plates (10g tryptone, 5g Difco casamino acids, 25g
NaCl, 4g MgCl2, 1g KCl, 15g agar per liter, pH 7.4) [31], and verified for light
1 In BL21 − PRO cells, TetR (needed for controlled induction of the Tet promoter)

exists on a plasmid, while in DH5α TetR is part of the chromosomal DNA.



Engineered Communications for Microbial Robotics 13

production. An overnight culture from a single colony was grown with vigorous
shaking in liquid GVM medium @28◦C to an OD of 2.5.

Genomic DNA was isolated from 100 ml of the overnight culture using a
scaled up version of the CTAB procedure [2], hooked out of solution, ethanol
reprecipitated, and dissolved in pH 8.0 TE 10:0.1.

A SalI restriction digest (cut site 5’ g↓tcgac 3’ ) of the genomic DNA was
performed and run on a 0.8% TAE agarose gel to verify cutting and average
fragment length. The digestion was performed in a 20µl reaction volume with
2µl (40 units) of SalI (NEB #138), 2µl of 10x NEBuffer SalI, supplemented
with 0.2µl of 100x BSA, with 2µl of genomic DNA (300ng/µl). The digestion
was carried out for 1 hour @37◦C, followed by a denaturation @65◦C for 20
minutes.

A similar SalI restriction digest of pUC19 plasmid DNA (NEB #304-1,
(1µg/l)) was prepared and verified by 0.8% TAE agarose gel electrophoresis.
pUC19 is a high copy number colE1 ori plasmid carrying the ampicillin resis-
tance gene, and the LacZ β-galactosidase gene. Inserts into the pUC19 multiple
cloning site disrupt the activity of the LacZ gene, and allow screening for inser-
tions on xgal plates using blue/white screening.

A ligation overnight @14◦C of the SalI digests of pUC19 and the Vibrio
fischeri genomic DNA was performed. The 20µl ligation reaction contained
2µl (800 Cohesive End Ligation Units) of T4 DNA Ligase (NEB #202), 2µl of
10x NEB T4 Ligase Buffer, 1µl of the SalI pUC19 digest DNA, and varying
amounts (0.5, 1, 2, 4, 8µl ) of the SalI genomic DNA digest.

The ligation mixture was transformed by 45 second heat shock @42◦C
into Life Technology subcloning efficiency E. coli DH5α [F−Φ80dlacZ-
∆(lacZY A − argF )U269deoRrecA1endA1hsdR17(r−

k .m+
k )phoAsupE44λ −

thi−1gyrA96relA1] and spread on lb amp (50mg/l) / xgal (25mg/l) / iptg
(100µM) plates. The plates were incubated overnight @37◦C to grow colonies,
and evaluated for the optimal vector : insert ratio by inspection of blue/white
colony ratios. The optimal ratio ligation mix (2µl of genomic DNA in the lig-
ation) was spread onto 20 lb amp plates, grown overnight @37◦C, and further
incubated for six hours at room temperature to allow expression of the heat sen-
sitive Lux gene cassette. Plates were visually examined for luminescent colonies
following dark adaptation. A single luminescent colony, labeled pTK1, was de-
tected, and streaked out onto lb amp plates.

A luminescent colony was used to inoculate 200 ml of lb amp medium, and
and overnight culture was grown with vigorous water bath shaking @37◦C to OD
3.0. A standard Qiagen spin maxiprep was performed, yielding pTK1 plasmid
DNA.

The pTK1 plasmid DNA was digested with EcoRI (as above with 2µl , 20
units, of NEB #101, (cut site 5’ g↓aattc 3’ ) and SalI restriction enzymes. The
unrestricted plasmid DNA, as well as the restriction digests were run on 0.8%
TAE agarose gels, along with samples of pUC19, pUC19 digested with SalI, and
a 1 kb Biorad DNA ladder.

pUC19 digests with EcoRI and SalI showed the expected 2.86 kb fragment,
while the undigested pUC19 showed several bands presumably corresponding to
supercoiled variants of the circular plasmid.



14 R. Weiss and T.F. Knight

pTK1 digests showed an EcoRI fragment of approximately 11.5 kb and two
SalI fragments of sizes 2.7 kb and 9 kb. The 2.7 kb fragment was identified as the
double cut pUC19 vector. The 9 kb fragment was identified as the luminescence
causing vector insert.

The insert of pTK1 was sequenced with the Sanger dideoxy technique us-
ing ABI BigDye terminator ready reaction mix and primer walking. Initial se-
quences were primed with the M13 -47 forward primer 5’(cgccagggttttcccagtcac-
gac)3’ and the M13 -48 reverse primer 5’(agcggataacaatttcacacagga)3’. Subse-
quent primer sequences were determined by choosing 18-22 mers from about 500
bp into the previous sequence. Primer sequences were chosen with approximately
50% gc content, typically ending (3’) with two or more gc bases to act as clamps.
Reverse complement sequences were also chosen from about 250 bases into the
new sequence using similar criteria, to prime a reverse direction verification se-
quence. The sequencing reactions were carried out in a 25µl volume, containing
4µl of ABI BigDye Ready Reaction Mix, 4µl of Sequencing buffer (200mM Tris-
HCl, 5mM MgCl2, pH 9), 1µl of primer, and 1µl of pTK1 plasmid template.
The sequencing reactions were run on an MJ PTC-200 thermal sequencer, with
a program consisting of a denaturing step of @95◦C for 10 minutes, followed
by 30 cycles consisting of 10 seconds @94◦C, 5 seconds @50◦C, and 4 minutes
@50◦C. Sequencing reactions were then held until use @4◦C in the cycler. The
sequencing reaction mix was gel filtered in a Princeton Separations sepharose
column, dried in a Speedvac, and resuspended in 25µl of ABI template sup-
pression buffer. After vortexing and spin down, the resuspended product was
denatured @95◦C for 1 minute, and snap cooled on wet ice. The product was
transfered to septum covered tubes and inserted into the ABI 310 sequencer.
Samples were run with a 61 cm capillary, filled with ABI POP-6 sequencing
gel, held @50◦C, and with a 3KV, 60 second capillary injection, followed by a
12.2KV 120 minute electrophoresis run.

Sequences were proofread with ABI Sequence Manager software, and sev-
eral omitted bases of the initial sequences were manually corrected. Corrected
sequences were assembled using the ABI Autoassembler software, yielding a com-
plete sequence which was again proofread. Two additional sequences were run
to verify questionable sequence calls. The final insert was determined to be 8654
bases long, and has been submitted to genbank as accession AF170104 [21].

The resulting sequence was compared against other known sequences in the
genbank NR database, and found to be essentially identical to previously re-
ported sequences for the Vibrio fischeri MJ-1 strain, for those portions which
had been previously sequenced. Specifically, the reported sequence is completely
identical in those regions reported in genbank M25751 [7] for strain MJ-1, and
differing only slightly from the earlier reports from sequencing this strain in
genbank Y00509 [13]. Specifically, these differences are a missing triplet gtt at
base 891, a short, recovered, frame shift mutation at bases 904 - 910, and a sub-
stituted cgc for a gcg triplet at base 1137. Given the identical sequence reported
in M25751, these differences probably represent mutations in their copy of the
original MJ-1 sequence.

Related Vibrio fischeri strains show high homology in these areas as well.
Entry M19039 [6], sequencing from ATCC 7744 (type strain) shows 23 point



Engineered Communications for Microbial Robotics 15

mutations relative to our sequencing of this area. M96844, [17], sequenced from
the squid symbiot ES114 strain, shows a relatively distant but still quite close
homology.

References

1. H Abelson, D Allen, D Coore, C Hanson, G Homsy, TF Knight, R Nagpal, E Rauch,
GJ sussman, and R Weiss, Amorphous computing, Tech. Report AI Memo No. 1665,
MIT Artificial Intelligence Laboratory, 1999.

2. FM Ausubel, R Brent, RE Kingston, DD Moore, JG Seidman, JA Smith, and
K Struhl, Short protocols in molecular biology, Wiley, 1999.

3. D Coore, Botanical computing: A developmental approach to generating intercon-
nect topologies on an amorphous computer, Ph.D. thesis, Massachusetts Institute
of Technology, 1998.

4. D Coore, R Nagpal, and R Weiss, Paradigms for structure in an amorphous com-
puting, Tech. Report AI Memo No. 1614, MIT Artificial Intelligence Laboratory,
1997.

5. T deKievit, PC Seed, J Nezezon, L Passador, and BH Iglewski, Rsal, a novel
repressor of virulence gene expression in pseudomonas aeruginosa, J. Bacteriol
181 (1999), 2175–2184.

6. JH Devine, C Countryman, and TO Baldwin, Nucleotide sequence of the luxr and
luxi genes and structure of the primary regulatory region of the lux regulon of vibrio
fischeri atcc7744, Biochemistry, vol. 27, 1988, genbank M19039 (strain ATCC
7744), pp. 837–842.

7. JH Devine, GS Shadel, and TO Baldwin, Identification of the operator of the lux
regulon from the vibrio fischeri strain atcc7744, Proc. Natl. Acad. Sci. USA, vol. 86,
1989, genbank M25751 (strain MJ-1) and M25752 (strain ATCC 7744, subset of
M19039), pp. 5688–92.

8. M Dworkin, Cell-cell interactions in the myxobacteria, Symp. Soc. Gen. Microbiol.,
vol. 25, 1973, pp. 135–147.

9. M Dworkin and D Kaiser, Cell interactions in myxobacterial growth and develop-
ment, Science 230 (1985), 18–24.

10. A Eberhard, AL Burlingame, C Eberhard, GL Kenyon, KH Nealson, and NJ Op-
penheimer, Structural identification of autoinducer of photobacterium fischeri lu-
ciferase, Biochemistry, vol. 20, 1981, pp. 2444–2449.

11. M Elowitz and S Leibler, A synthetic oscillatory network of transcriptional regula-
tors, Nature 403 (2000), 335–338.

12. J Engebrecht, KH Nealson, and M Silverman, Bacterial bioluminescence: isola-
tion and genetic analysis of the functions from vibrio fischeri, Cell, vol. 32, 1983,
pp. 773–781.

13. J Engebrecht and M Silverman, Nucleotide sequence of the regulatory locus control-
ling expression of the bacterial genes for bioluminescence, Nuc. Acids Res., vol. 15,
1987, genbank Y00509 (strain MJ-1), pp. 10455–10467.

14. C Fuqua and A Eberhard, Signal generation in autoinduction systems: synthesis
of acylated homoserine lactones by LuxI-type proteins, 211–230, GM Dunny and
Winans, Washington, DC, 1999, pp. 211–230.

15. WC Fuqua, S Winans, and EP Greenberg, Quorum sensing in bacteria: The luxr-
luxi family of cell density-responsive transcriptional regulators, J. Bacteriol 176
(1994), 269–275.



16 R. Weiss and T.F. Knight

16. T Gardner, R Cantor, and J Collins, Construction of a genetic toggle switch in
escherichia coli, Nature 403 (2000), 339–342.

17. KM Gray and EP Greenberg, Sequencing and analysis of luxr and luxi, the lumi-
nescence regulatory genes from the squid light organ symbiont vibrio fischeri es114,
Molecular Marine Biology and Biotechnology, vol. 1, 1992, genbank M96844
(strain ES114), pp. 414–419.

18. EP Greenberg, Quorum sensing in gram-negative bacteria, ASM News, vol. 63,
1997, pp. 371–377.

19. Thomas F. Knight Jr. and Gerald Jay Sussman, Cellular gate technology, First
International Conference on Unconventional Models of Computation (CS Calude,
J Casti, and MJ Dinneen, eds.), Springer-Verlag, 1998, pp. 257–272.

20. D Kaiser, Regulation of multicellular development in myxobacteria, Microbial De-
velopment (1984), 197–218.

21. TF Knight and N Papadakis, Vibrio fischeri lux operon sali digest, genbank
AF170104 (strain MJ-1), 1999.

22. S Lisser and H Margalit, Compilation of escherichia coli mrna promoter sequences,
Nuc. Acids Res. 21 (1993), no. 7, 1507–1516.

23. Harley H. McAdams and Adam Arkin, Simulation of prokaryotic genetic circuits,
Annu. Rev. Biophys. Biomol. Struc. 27 (1998), 199–224.

24. R Nagpal, Organizing a global coordinate system from local information on an
amorphous computer, Tech. Report AI Memo No. 1666, MIT Artificial Intelligence
Laboratory, 1999.

25. A Orosz, I Boros, and P Venetianer, Analysis of the complex transcription termi-
nation region of the escherichia coli rrnb gene, Eur. J. Biochem, vol. 201, 1991,
pp. 653–659.

26. E Rauch, Discrete, amorphous physical models, Master’s thesis, Massachusetts In-
stitute of Technology, 1999.

27. EG Ruby and KH Nealson, Symbiotic association of photobacterium fischeri with
the marine luminous fish monocentris japonica: a model of symboisis based on
bacterial studies, Biol. Bull 151 (1976), 574–586.

28. AM Stevens and EP Greenberg, Transcriptional activation by luxr, in cell-cell
signaling in bacteria, Cell-Cell Signaling in Bacteria (GM Dunny and Winans,
eds.), American Society for Microbiology, 1999.

29. Ron Weiss and George Homsy, Toward in-vivo digital circuits, Dimacs Workshop
on Evolution as Computation (Princeton, NJ), January 1999.

30. Ron Weiss, George Homsy, and Radhika Nagpal, Programming biological cells,
Eighth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Wild and Crazy Ideas Session (San Jose, Califor-
nia), October 1998.

31. MR Winfrey, MA Rott, and AT Wortman, Unraveling dna: Molecular biology for
the laboratory, Prentice Hall, 1997.



Successive State Transitions with I/O Interface
by Molecules

Ken Komiya1, Kensaku Sakamoto, Hidetaka Gouzu, Shigeyuki Yokoyama,
Masanori Arita3, Akio Nishikawa2, and Masami Hagiya

1 Department of Biophysics and Biochemistry,
2 Department of Information Science,

Graduate School of Science, University of Tokyo,
7–3–1 Hongo Bunkyo-ku, 113–0033 Tokyo, JAPAN.

{komiya,sakamoto,yokoyama}@biochem.s.u-tokyo.ac.jp
{nisikawa,hagiya}@is.s.u-tokyo.ac.jp

3 Electrotechnical Laboratory
1–1–4 Umezono, Tsukuba-shi, 305-8568 Ibaraki, JAPAN.

arita@etl.go.jp

Abstract. This paper reports three experimental achievements in our
computation model based on ‘whiplash’ reactions. We first show that
a single-stranded DNA (ssDNA) can serve as an independent machine
by using a solid support technique. Second, we show how to append an
arbitrary sequence, e.g. a transition state or a PCR primer, to the 3’-
end of a molecular machine, thus realizing its I/O interface. Finally we
demonstrate the successive state transitions for several steps on solid
phase with I/O.

1 Introduction

Autonomous DNA computing assumes that each molecule works not only
as a data carrier but also as a microscopic computing unit. Since we intro-
duced Whiplash model, a computation model based on whiplash reactions (Fig-
ure 1) [4], several advances on our model have been reported in different direc-
tions. In the theoretical side, Winfree showed the implementation of GOTO pro-
grams and the efficient solution of the directed Hamiltonian path problem [10].
In the experimental side, we showed the more efficient transition steps using an
isothermal reaction [9].

The isothermal conditions have made the successive state transitions more
realistic than do the common thermal schedules for PCR [9]. The normal PCR
cycle comprises the three steps of denaturation, annealing, and polymerization,
each performed at a different temperature. In contrast, the isothermal program
intends to perform these three steps simultaneously, thus coupling the dissocia-
tion of the ‘current state’ sequence from the transition table with the polymer-
ization of the ‘next state’ sequence (Figure 1). This coupled reaction was found
to actually occur at 80 ◦C, with an optional use of 64 ◦C that facilitates a hairpin
formation.

A. Condon (Ed.): DNA 2000, LNCS 2054, pp. 17–26, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



18 K. Komiya et al.

B

AB
2

B

3

B

B

stopper
A

1

4

BCB

B

A

A

A

A

Fig. 1. Whiplash model is the first to implement a program, or state transitions, into
ssDNA. (1) The current state A anneals to a transition table forming a hairpin structure.
(2) At its 3’-end, the next state B is appended by polymerization, which stops at the
stopper sequence (white box). (3) Denaturation. (4) The new state B anneals to another
position in the transition table.

In this paper, we show the successful multiple transition steps on solid
phase in Whiplash model. We also report the successful implementation of in-
put and output (I/O) interface in the model.

The implementation of I/O interface is a significant progress from the al-
ready reported experimental results. From the beginning of DNA computing,
molecules have been used as a memory device in realistic computation mod-
els. Although ‘DNA as memory’ is the original paradigm shown by Adleman
and Lipton, it confined DNA computing to the ‘single-instruction, multiple-data
(SIMD)’ model. In order to realize ‘multiple-instruction, multiple-data (MIMD)’
model, it is necessary to implement both a program and I/O interface in DNA
sequences. Whiplash model is the first realistic model to support both with DNA.

Independence of each molecular machine is a prerequisite for an autonomous
molecular computation. Although each DNA molecule can, in theory, work as
one machine in our model, DNA molecules were not immobilized and could freely
interact in the experiment of our previous paper [4]. In this paper, we employ the
surface-based approach to prevent an intermolecular reaction. Thus, Whiplash
model made a major progress toward realistic MIMD computation.

Reactions on solid phase naturally necessitate I/O interface for a molecu-
lar machine. Since DNA molecules are immobilized on solid phase, we cannot



Successive State Transitions 19

directly analyze the whiplash reaction by gel electrophoresis, as we did previ-
ously [9]. In addition, the subsequence at the 3’-end of the molecule cannot be
used as a PCR primer-binding site, because the 3’-end sequence always has a
complementary counterpart in the transition table, and the base pairing between
them inhibits PCR amplification. The way to avoid this difficulty is to append a
‘readout’ sequence to the 3’-end in the course of the successive transitions (Fig-
ure 2). The elongated molecules can be subjected to PCR amplification with the
readout sequences as primers, thus reporting the current state of the machine.
Note here that, under some experimental conditions, only a minor population
will undergo this sequence extension, and the remaining molecules can continue
further transition reactions.

3

A

A

2
A

1
A

A

2’

1’ No B here. B

INPUT OUTPUT

3’ PCR

Fig. 2. The I/O interface. (1) The input oligomer (shaded bar) anneals to the 3’-end
of the molecular machine. (2) The 3’-end is extended, forming the initial state Ā. (3)
Start transition steps. Note that we cannot set Ā when the whole ssDNA is synthesized,
because transitions would start in the preparation (PCR) step. (1’)(2’) For the output
reaction, the readout sequence B will be copied to the 3’-end of the machine. (3’)
Transition stops, because B does not appear in the transition table. The machine can
be amplified by PCR.

Consequently, we implemented I/O interface with molecules, which can:

– probe the status of transitions, and
– start the transition from an internal state.

We might also realize the data transfer between molecular machines with this
technique.

This paper is organized as follows. Our experiments and their results are
introduced in Section 2. We discuss the possibility of increasing transition steps,
and its accompanying experimental hurdles in Section 3.



20 K. Komiya et al.

2 Experiments

2.1 Materials and Methods

DNA. The DNA sequences used here (Table 1) were designed using a genetic al-
gorithm package, GENESIS. The details of this sequence design will be presented
elsewhere [1]. Oligonucleotides, including 5’-biotinylated ones, were commercially
synthesized by Amersham Pharmacia Biotech (Tokyo, Japan). Hereafter, DNA
sequences and oligomers are represented with bold letters.

Table 1. DNA sequences output by the genetic algorithm

no. sequence
0 CCGTCTTCTTCTGCT
1 TTCCCTCCCTCTCTT
2 CGTCCTCCTCTTGTT
3 CCCCTTCTTGTCCTT
4 TGCCCCTCTTGTTCT
5 CTCCTCTTCCTTGCT
6 CTTCTCCCTTCCTCT
7 CCTTCCTTCCCTCTT
8 TCCCCTTGTGTGTGT
9 GAGAGAGAGGCCCCCTATCC
10 GAAGAGAAGGGCACCCCTCC
11 GGGAAGGGACGCAACACCAC

(5’) 9 1 2 1 3 2 4 3 5 4

6 6 8 75 7

0

(3’)

10

GGATCC

Bam HI

Fig. 3. Tran7 is represented in a concatenated form of states.

Solid Support Technology. The molecular machine Tran7, in the form shown
in Figure 3, was amplified by PCR with the 5’-biotinylated primer 9 and the



Successive State Transitions 21

primer 10, whose sequence is complementary with that of 10, and was then
immobilized to streptavidin-coated beads (Dynal) according to the supplier’s
protocol. Conversion of Tran7 into the single-stranded form was done by alkaline
treatment.

I/O Interface. An arbitrary sequence can be appended to the 3’-end of the
state machine by polymerization using an appropriate oligomer as the template.
This polymerization was performed under the conditions similar to the whiplash
reaction [9]; the reaction buffer contains only dATP, dGTP, and dCTP but not
dTTP, and the thermal schedule for ‘input’ reaction was 94 ◦C for 30 sec, 80 ◦C
for 30 sec, and 64 ◦C for 20 min, with the addition of rTaq DNA polymerase
(Toyobo, Tokyo, Japan) just before the incubation at 80 ◦C.

For starting the successive transitions, an initial state was set on Tran7 by
appending the sequence complementary to a state sequence (from 1 to 8) using
an appropriate input oligomer. After this ‘input’ reaction, the input oligomer
was removed by alkaline treatment from Tran7, and then Tran7 was subjected
to successive whiplash reactions.

For readout of the results of compuation, the output oligomers (11–1–0,
11– 2–1, · · · to 11– 8–7) are to be added after the completion of successive
transitions. On the othe hand, for probing the status of the machine (Tran7),
the output oligomers were added, into the reaction mixture, in the course of
successive transitions. In both cases, the ‘readout’ sequence (11) is appended to
the 3’-end of (a subset of) the molecules.

Successive Transitions (whiplash reactions). Tran7 with the initial state,
immobilized on the beads, was added to the buffer provided by the supplier
(Toyobo) containing rTaq DNA polymerase (5 units), dATP, dGTP, and dCTP
(0.2 mM each). State transition was performed in a 25 µl reaction, which contains
5 pmol molecules (Tran7). The thermal schedule is as follows:

– initial incubations at 80 ◦C for 1 min
– add rTaq DNA polymerase
– 94 ◦C for 30 sec
– gradual cooling (in 2 min) to 64 ◦C
– 15 reaction cycles

– 64 ◦C for 30 sec
– shift up to 80 ◦C in 1 min
– 80 ◦C 5 min

2.2 Results

We developed an isothermal technique to perform successive whiplash reac-
tions [9]. Since we already achieved the efficient transitions up to 2 steps, more
steps were tried in the present study. The employed DNA molecule (Tran7) is
long enough to easily interact intermolecularly. For the purpose of preventing



22 K. Komiya et al.

this intermolecular interaction, each Tran7 was immobilized on a solid surface.
The initial state 1 was appended with the input oligomer (1–0–10) to the 3’-end
of the immobilized molecule, which was then allowed to perform the whiplash
reactions.

The whiplash reaction consists of 15 cycles, each of which includes the in-
cubation phase at 64 ◦C, and the trasition phase at 80 ◦C. Note that the incu-
bation phase is only to facilitate hairpin-structure formation. This operation is
inherently different from a normal PCR reaction, in which polymerization and
denaturation occur at a different temperature. Therefore, our reaction can be
called an isothermal-reaction.

During the successive transitions, each output oligomer was added to the
reaction mixture for the status probing (Figure 4). The oligomer hybridized
with the 3’-end of the machine after the completion of the specific transition
step. Note here that this output reaction competes with the whiplash reaction
for the next transition; the extent of this competition is not yet examined.

9 1 8 70 10

8 7

8 711

B.
1 0

1 011

A.

A. probing of State 1
B. probing of State 8

5’
3’

3’
5’

Fig. 4. The output oligomer 11–1–0 appends the readout sequence 11 to the 3’-end,
and it probes the state 1. In the same way, the output oligomer 11–8–7 works for
probing the state 8.

For converting the state machine into the double-stranded form, dTTP was
added to the reaction mixture after the status probing. This conversion is nec-
essary to use a restriction enzyme (BamHI) for cutting off the part polymerized
during successive transitions. The cut-off part was then amplified by PCR, with
primers 10 and 11, in order to detect it on a 8% polyacrylamide gel stained with
ethidium bromide (Figure 5).

The bands with the expected mobilities appeared up to 4 succesive steps
(lanes 0 – 4), and were significantly detected for the 5th and 6th steps, with
major bands due to the unexpected products. The band for the 7th step was not
observed.



Successive State Transitions 23

The unexpected products in the 5th and 6th steps were subjected to sequence
analysis, and were found to comprise 11– 6–5–10 for the 5th step, and 11– 2–
1–0–10 for the 6th.

The reason for the occurrence of these sequences is probably hybridization
between the extended part of the machine and PCR primers (or the remains of
output oligomers), due to accidental similarities in their sequences. This was a
pitfall in our sequence design.

In order to show that our technique enables the state machine to start from
any state, we appended sequence 3– 4, forcing the machine to start from the
4th state. We thus succeeded in skipping the first 4 steps, and in performing the
following 4 transitions up to state 8 (data not shown).

M 0 1 2 3 4 5 6 7

Fig. 5. Gel electrophoresis of the transition products. The transiton was successful up
to the 4th step. Unexpected short major bands appear in the 5th and 6th steps.

3 Discussion

3.1 Benefits from I/O Interface

We realized the appending of any transition state or any readout sequence at
the 3’-end of the state machine. This implementation of I/O interface greatly
improved the practicality of Whiplash model. A typical design of readout process
for previous DNA computers has been to hybridize a marker DNA to a specific
position which is pre-designed in DNA sequences. That is, what can be read is
fixed by the initial sequence design. In our approach, on the other hand, reading
or outputting an arbitrary state became possible. We list some of its applications.

Starting from an Internal State. By appending an input sequence, we can
start the state transition from any internal state, and can skip some transitions.



24 K. Komiya et al.

Probing Transition States. By appending a PCR primer-binding site, we
can check whether a certain state is transited. Note that appending of a primer-
binding site does not alter the execution of other machines. This means that
we can observe the transitions, by not stopping the execution of the unprobed
machines.

Data Transfer between Molecules. With the I/O technique, we could feed
the output of one machine as the input of another. We could also preserve the
computed data for the execution of different machines. This is a kind of ‘DNA to
DNA computations’ [11], where information on a DNA molecule is transferred
to another molecule, according to a logic arbitrarily given [11,12,13]

3.2 Reaction on Solid Phase

Reaction using solid phase techniques has been used in DNA computing, mainly
for solving NP-complete problems [6,5]. The scalability and the potential for
automation are usually referred as the advantages of the solid support, because
DNA is used only as a memory device.

On the other hand, the importance of solid support for whiplash reactions is
guaranteeing the independence of each molecule. In this sense, our idea of this
use of the surfaces is hinted by a report on an in vitro selection of RNA enzymes
(ribozymes) [2]. A ribozyme is a kind of the sophisticated molecular machines
that can be artificially produced [3].

3.3 Sequence Design

Since the melting temperature of DNA molecules depends on their GC content,
it is best to uniformly distribute GC in sequences. For this reason, we set the
GC content of sequences to be the same. More important is the avoidance of
unpexpected polymerization from the 3’-end. For this reason, this part should
not completely hybridize with other sequences.

However, the sequence design satisfying these conditions became extremely
difficult, especially when:

– we can use only three bases, and
– we fix the number of GCs in each sequence.

One solution to get over this hardness is to enhance the genetic alphabet by
using artificial bases such as isoguanosines (iG) or 5-methylisocytidines (iC). We
do not intend, however, to fully mix these bases with natural bases. We only need
to introduce a single artificial base near each 3’-end, because the polymerization
of misproducts does not start unless the 3’-end completely hybridizes with a
‘false’ site. Therefore, a single iC (or iG) is enough to prevent an unexpected
extension. Although artificial bases are not used in our experiment of this paper,
the prospect of their special use is shown in our previous work [9].



Successive State Transitions 25

3.4 Increasing the Number of Tranistion Steps

The reliability and the efficiency of intramolecular reaction may have been
doubted, but we demonstrated the successful multi-step transitions. In this pa-
per, we introduced three experimental landmarks in Whiplash model:

– state transition on solid phase,
– implementation of an I/O interface,
– state transition for several steps.

In whiplash reactions, the transition from the current state to the next one
competes with the ‘back annealing’ of the current state to the previous position in
the transition table. This difficulty was overcome with the isothermal conditions,
developed previously [9].

Several successive transitions were expected to confer other difficulties. One
is that the sequences added at the 3’-end during the transitions have comple-
mentary counterparts in the transition table. Therefore, the longer becomes the
state machine, the more chance it has to take a hairpin structure, which prohibits
further transitions in the present design of the transition table.

However, the drastic reduction in efficiency after the 4th step, as shown
above, was probably caused by the mis-annealing of the 3’-end subsequence to
inappropriate PCR primers or oligomers for output. It should be made clear
which type of error is responsible for this result: an error during the state tran-
sition, or an error during the PCR amplification for readout. Although either
possibility must be separately considered in the design of DNA sequences, these
possibilities may at least be attributed to the composition biased toward C and
T. (Note that we do not use A in sequences.) They were designed to contain very
few G, in order not to hybridize with eath other, but this bias seems to have
induced the unexpected similarity between 3’-termini of sequences. Careful re-
design of sequences with more G is now ongoing. We consider that the transition
for 10 steps will be possible with ‘good’ sequences.

Another difficulty relates to the multiple occurrence of a state in the table,
making the machine go along branched paths. This makes the ‘back annealing’
described above even more serious. This undesired effects of the ‘back annealing’
was anlyzed in terms of statistical thermodynamics by John A. Rose and Russell
J. Deaton (University of Mempshis).

Acknowledgment. This work is supported by the Japan Society for the Pro-
motion of Science “Research for the Future” Program (JSPS-RFTF 96I00101).

The fifth and seventh authors are supported by Grant-in-Aid for Scientific
Research on Priority Area “Genome Science” from Ministry of Education, Sci-
ence, Sports and Culture, Japan.



26 K. Komiya et al.

References

1. Arita, M., Nishikawa, A., Hagiya, M., Komiya, K., Gouzu, H., and Sakamoto,
K.: Improving Sequence Design for DNA Computing, pp.875–882, Proceedings of
GECCO2000, 2000.

2. Bartel, DP. and Szostak, JW.: Isolation of New Ribozymes from a Large Pool of
Random Sequences, Nature 261, pp.1411–1418, 1993.

3. Ellington, AD., Robertson, MP., James, KD., and Cox, JJ.: Strategies for DNA
Computing, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science 48, pp.173–184, 1999.

4. Hagiya, M., Arita, M., Kiga, D., Sakamoto, K., and Yokoyama, S.: Towards Parallel
Evaluation and Learning of Boolean mu-formulas with Molecules, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science 48, pp.57–72, 1999.

5. Liu, Q., Wang, L., Frutos, AG., Condon, AE., Corn RM., and Smith LM.: DNA
Computing on Sufaces, Nature 403, pp.175–179, 2000.

6. Morimoto, N., Arita, M., and Suyama, A.: Solid Phase DNA Solution to the Hamil-
tonian Path Problem, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science 48, pp.193–206, 1999.

7. Ogihara, M. and Ray, A.: Simulating boolean circuits on DNA computers, Proc.
1st International Conference of Computational Molecular Biology (ACM Press),
pp.326–331, 1997.

8. Piccirilli, JA., Krauch, T., Moroney, SE., and Benner, SA.: Enzymatic incorpora-
tion of a new base pair into DNA and RNA extends the genetic alphabet, Nature
343, pp.33–37, 1990.

9. Sakamoto, K., Kiga, D., Komiya, K., Gouzu, H., Yokoyama, S., Ikeda, S.,
Sugiyama, H., and Hagiya, M.: State Transitions by Molecules, Biosystems 52,
pp.81–91, 1999.

10. Winfree, E.: Whiplash PCR for O(1) computing, Proc. 4th DIMACS Workshop on
DNA Based Computers, pp.175–188, 1998.

11. Landweber, LF., Lipton, RJ., and Rabin, MO.: DNA2DNA Computations: A po-
tential ‘Killer App’?, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science 48, pp.161–172, 1999.

12. Suyama, A., Nishida, N., Kurata, K., and Omagari, K. :a poster abstract for RE-
COMB2000, 2000.

13. Brenner, S., Williams, SR., Vermaas, EH., Storck, T., Moon, K., McCollum, C.,
Mao, JI., Luo, S., Kirchner, JJ., Eletr, S., DuBridge, RB., Burcham, T., and Al-
brecht, G.: In vitro cloning of complex mixtures of DNA on microbeads: physical
separation of differentially expressed cDNAs, Proceedings of National Academy of
Science USA 97, pp.1665-70, 2000.



Solution of a Satisfiability Problem on a
Gel-Based DNA Computer

Ravinderjit S. Braich, Cliff Johnson, Paul W.K. Rothemund, Darryl Hwang,
Nickolas Chelyapov, and Leonard M. Adleman

University of Southern California
Laboratory for Molecular Science
835 West 37th Street, SHS 172

Los Angeles, CA 90089

Abstract. We have succeeded in solving an instance of a 6-variable 11-
clause 3-SAT problem on a gel-based DNA computer. Separations were
performed using probes covalently bound to polyacrylamide gel. During
the entire computation, DNA was retained within a single gel and moved
via electrophoresis. The methods used appear to be readily automatable
and should be suitable for problems of a significantly larger size.

1 Introduction

In 1994 Adleman demonstrated the use of DNA molecules as a means of solv-
ing computational problems [1]. The vast parallelism which computing with
molecules potentially affords has led to speculation that molecular computers
might be suitable for attacking problems that have resisted conventional meth-
ods [1,2,3,4,5,6,7,8,9].

While the theory of molecular computation has developed rapidly, the prac-
tice of molecular computation has not kept pace. Although several groups have
investigated molecular computation in the laboratory [1,10,11,12,13,14,15,16,17,
18,19,20], no problem has yet been solved that most humans would find daunt-
ing. This paper reports on the progress of our group in attempting to create a
molecular computer capable of solving problems that would be beyond the range
of humans without the aid of electronic computers.

The model of computation described here is related to the previously de-
scribed Sticker Model [21]. The Sticker Model uses two basic operations for
computation: separation based on subsequence and application of stickers. In
the experiment reported here, only separations were used.

Our initial approach to separation involved the incubation of a solution con-
taining a DNA library with probes attached to a solid support (beads or fil-
ters). Molecules with appropriate subsequences hybridized to probes and were
captured; molecules without such subsequences were removed by washing. Cap-
tured molecules were released back into solution by heating in new buffer. This
seemingly straightforward approach did not work well in our hands. First, the
hybridization of DNA in a 3-dimensional solution with probes immobilized on

A. Condon (Ed.): DNA 2000, LNCS 2054, pp. 27–42, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



28 R.S. Braich et al.

a 2-dimensional solid support was unacceptably slow. Second, molecules that
should have been retained were lost at an unacceptably high rate during wash-
ing. Third, efficient release of captured molecules was achieved only with the
use of a large volume of buffer, with the result that the DNA library became
increasingly dilute as the computation progressed.

Recently, Mosaic Technologies (Boston, MA) introduced the
AcryditeTM phosphoramidite for modifying DNA molecules at the 5′-end
during chemical synthesis. Like an acrylamide monomer, the AcryditeTM phos-
phoramidite carries a reactive ethylene functionality. Hence, standard methods
can be used to copolymerize AcryditeTM -modified DNA probes into poly-
acrylamide gels—covalently linking the probes to the gel matrix. Because a
gel is a nearly liquid environment, AcryditeTM -linked DNA probes apparently
approximate probes in a solution. This gives one benefits of a solid-support-
based system while still retaining characteristics of a solution-based system.
In particular, the capture rate of molecules with the proper subsequence is
improved, presumably because the 3-D to 2-D transition is mitigated. In
addition, DNA can be moved by electrophoresis rather than transported by the
movement of buffer; hence the problems of volume increase and library dilution
are solved.

Our pilot separation experiments with AcryditeTM were adequate to warrant
testing the technology in a DNA-based computation on a 3-SAT problem. We
chose to solve the 6-variable 11-clause formula

Φ =

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ ¬x3 ∨ ¬x4) ∧ (x3 ∨ ¬x4 ∨ ¬x5) ∧
(x4 ∨ ¬x5 ∨ ¬x6) ∧ (x5 ∨ ¬x6 ∨ ¬x1) ∧ (x6 ∨ ¬x1 ∨ ¬x2) ∧
(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3)

. (1)

Φ has a unique solution: x1 = x2 = · · · = x6 = true.

2 Materials and Methods

2.1 Design of the Library

To represent all possible variable assignments for the chosen 6-variable SAT
problem, a Lipton encoding [3] was used. For each of the 6 variables x1, x2, . . . ,
x6, two distinct 15 base value sequences were designed—one representing true
(T ), X T

k , and one representing false (F ), X F
k . Each of the 26 truth assignments

was represented by a library sequence of 90 bases consisting of the concatenation
of one value sequence for each variable. DNA molecules with library sequences
are termed library strands and a combinatorial pool containing library strands
is termed a library. The probes used for separating the library strands have
sequences complementary to the value sequences.

Errors in the separation of the library strands are errors in the computation.
Sequences must be designed to ensure that library strands have little secondary
structure which might inhibit intended probe-library hybridization. The design



Solution of a Satisfiability Problem 29

must also exclude sequences that might encourage unintended probe-library hy-
bridization. To help achieve these goals, sequences were computer-generated to
satisfy the following constraints:

1. Library sequences contain only A’s, T’s, and C’s.
2. All library and probe sequences have no occurrence of 5 or more consecutive

identical nucleotides; i.e. no runs of more than 4 A’s, 4 T’s, 4 C’s or 4 G’s
occur in any library or probe sequences.

3. Every probe sequence has at least 4 mismatches with all 15 base alignment
of any library sequence (except for with its matching value sequence).

4. Every 15 base subsequence of a library sequence has at least 4 mismatches
with all 15 base alignment of itself or any other library sequence.

5. No probe sequence has a run of more than 7 matches with any 8 base align-
ment of any library sequence (except for with its matching value sequence).

6. No library sequence has a run of more than 7 matches with any 8 base
alignment of itself or any other library sequence.

7. Every probe sequence has 4, 5, or 6 Gs in its sequence.

Constraint (1) is motivated by the assumption that library strands composed
only of As, Ts, and Cs will have less secondary structure than those composed
of As, Ts, Cs, and Gs [22]. Constraint (2) is motivated by two assumptions: first,
that long homopolymer tracts may have unusual secondary structure and second,
that the melting temperatures of probe-library hybrids will be more uniform if
none of the probe-library hybrids involve long homopolymer tracts. Constraints
(3) and (5) are intended to ensure that probes bind only weakly where they are
not intended to bind. Constraints (4) and (6) are intended to ensure that library
strands have a low affinity for themselves. Constraint (7) is intended to ensure
that intended probe-library pairings have uniform melting temperatures.

The value sequences generated to represent x1 = F, x2 = F, · · · , x6 = F
were:

X F
1 = 5′ − TATTCTCACCCATAA − 3′, X F

2 = 5′ − ACACTATCAACATCA − 3′

X F
3 = 5′ − CCTTTACCTCAATAA − 3′, X F

4 = 5′ − CTCCCAAATAACATT − 3′

X F
5 = 5′ − AACTTCACCCCTATA − 3′, X F

6 = 5′ − TCATATCAACTCCAC − 3′

The value sequences generated to represent x1 = T, x2 = T, · · · , x6 = T
were:

X T
1 = 5′ − CTATTTATATCCACC − 3′, X T

2 = 5′ − ACACCTAACTAAACT − 3′

X T
3 = 5′ − CTACCCTATTCTACT − 3′, X T

4 = 5′ − ATCTTTAAATACCCC − 3′

X T
5 = 5′ − TCCATTTCTCCATAT − 3′, X T

6 = 5′ − TTTCTTCCATCACAT − 3′

We note that because of the nature of the constraints (which require
the inspection of subsequences ≤ 15 bases long) it was only necessary to
check that a special subset of all 26 library sequences satisfied the con-
straints. In particular, the sequence design program checked that the library se-
quences X T

1 X T
2 X T

3 X T
4 X T

5 X T
6 , X F

1 X F
2 X F

3 X F
4 X F

5 X F
6 , X F

1 X T
2 X F

3 X T
4 X F

5 X T
6 , and



30 R.S. Braich et al.

X T
1 X F

2 X T
3 X F

4 X T
5 X F

6 simultaneously satisfied constraints (1–7). These sequences
contain, as subsequences, all 15 base subsequences that occur in the full 64 se-
quence set of library sequences. Thus, for longer library sequences, the number
of constraints that need to be checked does not increase exponentially with the
number of variables but rather as the square of the number of variables. We
denote the reverse complements of X T

k and X F
k as X

T

k and X
F

k , respectively. We
sometimes refer to “X T

k or X F
k ” and “X

T

k or X
F

k ” as Xk and X k, respectively.

2.2 Synthesis of the Library and Probes

The 6-variable library strands were synthesized by employing a mix-and-split
combinatorial synthesis technique [23]. Oligonucleotide synthesis was performed
on a dual column ABI 392 DNA/RNA Synthesizer (Applied Biosystems, Foster
City, CA) at a 1µmole scale on CPG solid support. The library strands were
assigned library sequences with X1 at the 5′ end and X6 at the 3′-end (5′ −
X1 −X2 −X3 −X4 −X5 −X6 − 3′). Thus synthesis began by assembling the two
15 base oligonucleotides with sequences X T

6 and X F
6 in separate columns. The

columns were then removed from the synthesizer and opened; the CPG beads
in the columns were removed and mixed together. One half of the beads were
returned to the first column and the other half to the second. Synthesis continued
with sequences X T

5 and X F
5 . This process was repeated until all 6 variables had

been treated.
Twelve probes, having sequences X

F

k , X
T

k , k = 1 . . . 6 and modified at the 5′-
end with AcryditeTM , were obtained from Operon Technologies Inc. (Alameda,
CA).

2.3 Library Capture Analysis

To determine the efficiency of library capture and release by gel-embedded
probes, capture experiments were undertaken. In this experiment, a library sim-
ilar to that described in 2.2 was used but the synthesis was performed using a
polystyrene rather than a CPG support.

Preparation of gels. Capture gels were prepared in 1 mm x 10 cm x 10 cm
plastic gel cassettes (Novex). The upper half of the gel cassette was divided into
three parts by inserting ∼1-mm thick, ∼5-mm wide, plastic spacers. Approxi-
mately 7 ml of 10% acrylamide solution were poured into the cassette, enough to
cover the bottom 0.5 cm of the dividing spacers, and allowed to polymerize. Af-
ter the acrylamide had polymerized for 10 minutes, any unpolymerized solution
was shaken off, and the top of the polymerized gel rinsed with 1X TBE buffer.
Capture layers were then polymerized on top of the already polymerized gel. In
each partition of the gel, 100 µl of 10% acrylamide solution containing 15µM
of the appropriate probe were allowed to polymerize. Again polymerization was
allowed to proceed for 10 minutes, excess solution shaken off, and top of the gel
layer rinsed with 1X TBE. At this point, dividing spacers were removed and top



Solution of a Satisfiability Problem 31

of the gel rinsed one more time with 1X TBE. The gel was then topped off with
10% acrylamide solution and appropriate combs for well formation inserted. Two
sets of capture gels were prepared and used in the library capture experiment.

Running the gels. For one set of gels, electrophoresis was carried out in the
fridge (cold) at 4◦C in order to observe capture. For the other set of gels, elec-
trophoresis was carried out using a gel box with a water circulator (hot) set to
75◦C. In both cases gels were put in the electrophoresis chamber and allowed to
come to thermal equilibrium before commencing electrophoresis. Electrophoresis
was carried out at 10 volt/cm2 in all cases. It was observed that in the higher
temperature electrophoresis went at a faster rate than when electrophoresis was
carried out in the cold. After electrophoresis was complete, gels were dried on a
gel dryer for 30 minutes at 40◦C. After drying, the gels were put in Phosphor
Storage Screens and exposed overnight.

2.4 Confirming Integrity of the Library via PCR

To verify the degeneracy and integrity of the library, the library was amplified via
PCR. Twenty PCR reactions were performed on the library using 5′-end primers
with sequences X T

1 or X F
1 and 3′-end primers with sequences X

T

2 , . . . ,X
T

6 or
X

F

2 , . . . ,X
F

6 .

2.5 The Algorithm

Coupling of the AcryditeTM phosphoramidite to DNA probes allows the probes
to be immobilized in a polyacrylamide gel matrix. During electrophoresis at low
temperatures, such probes hybridize with and capture passing DNA molecules
bearing complementary subsequences. DNA molecules without complementary
subsequences pass through the gel relatively unhindered. Captured DNA strands
can be released by running electrophoresis at a temperature higher than the
melting temperature of a probe/probe-complement hybrid. Released molecules
can be used in subsequent steps as required. Using this approach, our algorithm
is as follows:

1. For each of the 11 clauses of Φ prepare a polyacrylamide gel capture layer
containing three AcryditeTM -modified probes, one for each literal in the
clause. (If xk appears in the clause, add a probe with sequence X

T

k ; if ¬xk

appears add a probe with sequence for X
F

k .) Place the capture layers in
sequence within a single gel. Place the library into the gel preceding the first
capture layer.

2. Cool the area of the gel containing the first capture layer while heating the
areas of the gel preceding and following it. Begin electrophoresis to move
the library through the first capture layer. Molecules encoding truth assign-
ments satisfying the first clause will be captured in the first capture layer,
while molecules encoding non-satisfying assignments will run through the
first capture layer and continue beyond the second capture layer.



32 R.S. Braich et al.

3. Cool the area of the gel containing the second capture layer while heating
the areas of the gel preceding and following it. Molecules captured in the
first capture layer will be released to move through the second capture layer.
Released molecules encoding truth assignments satisfying the second clause
will be captured in the second capture layer, while molecules encoding non-
satisfying assignments will run through the second capture layer and continue
beyond the third capture layer.

This process is repeated for each of the remaining 9 capture layers. The
final (11th) capture layer will capture only those molecules which have been
retained in all 11 capture layers and hence encode truth assignments satisfying
each clause of Φ. These answer strands are extracted from the final capture layer,
PCR-amplified and sequenced.

2.6 Construction and Running of the Computer

Preparation of the modules. For each clause in Φ a clause module (Fig. 1B)
containing a 3-probe capture layer was prepared. The capture layer was prepared
by mixing the three probes (chosen as described in step 1 of the algorithm above)
at a concentration of 7.5 µM each in 10% acrylamide solution. 100 µl of this
solution were allowed to polymerize on top of 200 µl of already-solidified 0.7%
(w/v) agarose (Seakem©R Gold, FMC BioProducts, Rockland, ME) in a well
of a 96-well flat bottom plate (Nunc-Immuno Plate, Nalge Nunc, Rochester,
NY). Once the acrylamide layer had polymerized (10–15 minutes), warm agarose
solution was added to fill the remainder of the well and allowed to solidify. Using
this method, 11 clause modules were prepared. In addition, a library module was
prepared by mixing 500 pmols of the library with agarose and allowing the
agarose to solidify in one of the wells. Other blank modules were prepared by
allowing pure agarose to solidify in some wells.

Loading the modules. The computation was performed in a 35-cm long glass
tube with an outer diameter of 0.5 cm and an inner diameter of 0.3 cm. Be-
fore loading the tube with modules, the inside of the tube was silanized with
Sigmacote©R (Aldrich, Milwaukee, WI). The tube was then loaded with mod-
ules by a squishing method (Fig. 1C–E) wherein the tube was pushed into the
appropriate well. This process cut a cylindrical core of gel from the well, trans-
ferred it into the tube, and forced resident modules upward. To ensure good
contact between the successive modules and to reduce the possibility of air bub-
ble formation at the interface, prior to each squish, resident modules were pushed
downward until a small bit of the lowest module protruded from the tube. First
several blank modules were added to the tube, followed by alternating clause
modules and blank modules. Thus each capture module was separated from the
next by a blank module of pure agarose gel. After all of the 11 clause modules
had been loaded in the tube, a blank module and then finally the library module
were loaded.



Solution of a Satisfiability Problem 33

‹ 

‹

‹

A

B

C D E

A

B

C

D

E

F

G

H

1 2 3 4 5 6 7 8 9 10 11 12

Agarose

Agarose

Polyacrylamide
   with probes

Fig. 1. Preparation of a clause module. (A) A 96-well flat bottom plate was used as a
mold for the clause modules (as well as the library and blank modules). (B) To make a
clause module, a polyacrylamide capture layer (with appropriate probes) was poured
on top of already-solidified agarose gel. The well was then topped-off with agarose.
(C–E) Loading of a clause module. (C) A glass tube holding one clause module and
one blank module is positioned over a well holding a second clause module. (D) The
glass tube is lowered into the well and the resident modules are pushed upwards. (E)
The tube, now holding two clause modules and one blank module, is withdrawn.

Heating and cooling the capture layers. To keep the temperature high
or low at a given position on the glass tube, three movable water jackets were
assembled by drilling 0.5-cm holes in plastic drying tubes (Aldrich). These water
jackets were connected to hot or cold water circulators with plastic tubing and
slid onto the glass tube. Figure 2 shows a schematic of the final apparatus.



34 R.S. Braich et al.

fl

flfl

fl

›

›

› fl

fi

fl

Gel Running 
    Buffer

(-)

Hot Cold Hot

(+)

Agarose

      Capture Layer

A B C fl
›

Fig. 2. Apparatus assembled for computation. A 35-cm glass tube loaded with the
library module, 11 blank modules, and 11 clause modules was fitted with three water
jackets (A-C). Library strands in the capture layer inside of (A) were released and
moved into the capture layer inside of (B). There, library strands with subsequences
complementary to the probes were captured and retained. The rest of the strands
passed into the capture layer inside of (C) but because (C) was kept hot the strands
passed through unhindered.

2.7 Computation

The ends of the assembled apparatus were inserted into capped glass Liquid
Scintillation Vials (Wheaton, Millville, N.J.) containing, 1X TBE gel running
buffer and electrodes. The water jackets were adjusted so that the cold water
jacket was positioned over the first capture layer. Throughout the computation,
the hot circulating water bath was set at 75◦C while the cold bath was main-
tained at 4◦C. Gel electrophoresis was performed at a constant voltage of 307
volts, ∼3 mA. After 30 minutes had passed, the electrophoresis was stopped,
each water jacket was moved to the next capture layer, and the electrophoresis
was restarted. This process was repeated for all 11 capture layers.

Next the gel was extruded from the glass tube and the final capture layer
was dissected away, crushed and soaked in 5 ml of water. The captured answer
strands were extracted from the gel by incubating at 65◦C for 12 hours. After
extraction, the DNA was lyophilized and reconstituted into 200 µl of water. The
DNA was desalted using a Microcon 30 Microconcentrator column (Millipore,
Bedford, MA) and reconstituted in 500 µl of water.



Solution of a Satisfiability Problem 35

2.8 Determination of Answer Strand

PCR. PCR amplification of the answer strands was performed on a PE Applied
Biosystems GeneAmp©R PCR System 9700 (Perkin Elmer, Foster City, CA).
Five PCR reactions were run. For the first four reactions oligos with sequences
X T

1 or X F
1 were used as 5′-end primers and AcryditeTM -modified probes with

sequences X
T

6 or X
F

6 were used as 3′-end primers. In the fifth PCR reaction all
four primers were used simultaneously. The PCR reactions were performed using

1
5000 th (by volume) of the reconstituted answer strands and 10 pmols each of the
appropriate primers in a final reaction volume of 50 µl that contained 50 mM
KCl, 1.5 mM MgCl2, 10mM tris (pH 8.8), 200 µM of each dNTP, and 1 unit of
Taq DNA Polymerase (Promega, WI). The reaction mixture was preheated to
95◦C and thermocycled (95◦C 15s, 40◦C, 45s, 72◦C, 90s) 35 times. To determine
the number of correct answer strands recovered, additional PCR reactions (using
all primer pairs and all four primers) were performed using fractions of the
recovered answer strands from 1

500 th down to 1
5×1013 th.

Sequencing. Two sequencing reactions were run. The product of PCR amplifi-
cation using primers with sequences X T

1 and X
T

6 was sequenced using a primer
with sequence X T

1 . In addition, the product of PCR amplification using all four
primers (X T

1 ,X F
1 ,X

T

6 , and X
F

6 ) was sequenced using a primer corresponding to
X F

1 .
Prior to sequencing, 5 µl of the PCR product was incubated for 15 minutes

at 37◦C with 1 µl (2 units) of Shrimp Alkaline Phosphatase and 1 µl (10 units) of
Exonuclease I (PCR Product Pre-Sequencing Kit, USB, Cleveland, OH). This
pretreatment was performed to destroy any dNTP’s, primers and extraneous
single-stranded molecules left over from the PCR reaction that might have in-
terfered with the sequencing reaction. After incubation the reaction tube was
heated to 80◦C for 15 minutes to inactivate the enzymes.

Pretreated PCR product was sequenced using the Thermo Sequenase Radi-
olabeled Terminator Cycle Sequencing Kit (USB). The sequencing reaction was
run through 30 thermocycles (denatured at 95◦C for 15s, annealed at 40◦C for
45s, and extended at 72◦C for 90s) on a GeneMate Thermocycler (ISC Bioex-
press, Kaysville, UT).

3 Results

3.1 Library Capture Analysis

Figure 3 shows the capture of the library using each of the twelve possible probes.
At low temperature library was captured on each of the probes. This confirmed
both that library strands with subsequences corresponding to each value se-
quence were present in the library and that the probes were good (sometimes
incompletely modified probes failed to copolymerize into gels). At high tempera-
ture, library passed the probes unhindered suggesting that library strands could
be efficiently released from probes at each step in the computation.



36 R.S. Braich et al.

A B

X   1
T

X   1
F

X   2
T

X   2
F

X   3
T

X   3
F

X   4
T

X   4
F

X   5
T

X   5
F

X   6
T

X   6
F

X   1
T

X   1
F

X   2
T

X   2
F

X   3
T

X   3
F

X   4
T

X   4
F

X   5
T

X   5
F

X   6
T

X   6
F

Fig. 3. Capture of the library by gel-embedded probes. (A) Twelve probes X
F
1 , . . . ,X

F
6

and X
T
1 , . . . ,X

T
6 were used to assay the capture of library strands bearing sequences

X F
1 , . . . ,X F

6 and X F
1 , . . . ,X F

6 at low temperature. Upper bands show capture of the
library on probes, lower bands show uncaptured library that presumably does not bear
a subsequence complementary to the probe. (B) Repetition of the experiment at high
temperature shows that library strands passed the probes unhindered (and hence could
be released from a capture layer) at high temperature.

3.2 Confirming the Integrity of the Library via PCR

Figure 4 shows the results of the PCR reactions. PCR products of the expected
lengths were obtained confirming that library strands with the correct subse-
quences corresponding to each value sequence (true or false) were present and
in the expected positions in the library.

3.3 Readout of the Answer Strands by PCR

Figure 5 shows the results of the PCR amplification of 1
5000 th of the answer

strands using all 4 combinations of the primers. When primers with sequences
X T

1 and X
T

6 were used, a 90-mer PCR product was seen. For the other 3 com-
binations of primers, little if any amplification was seen. Amplification of the
original library was seen to give a 90-mer PCR product with each of the 4 dif-
ferent combinations of the primers. This indicates that the answer strands were
enriched for strands encoding x1 = T and x6 = T . Additional PCR reactions
at other dilutions revealed that incorrect strands are present in small numbers
(PCR of 1

500 th of the answer strands gave positive bands for all pairs of primers)
and that the correct strands are present in great numbers (PCR of 1

5×1011 th

still gave a positive band for X T
1 and X

T

6 primers). Assuming that PCR allows



Solution of a Satisfiability Problem 37

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10C D

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10A B

Fig. 4. PCR analysis of the original library. (A) X T
1 , X

T
2 , . . . ,X

T
6 probes. (B) X F

1 ,
X

T
2 , . . . ,X

T
6 probes. (C) X T

1 , X
F
2 , . . . ,X

F
6 probes. (D) X F

2 and X
F
2 , . . . ,X

F
6 probes.

In each panel all lanes have X1 as one primer and have as the other primer: lanes 2 and
3 X 2 probe primer; lanes 3 and 4, X 3 primer except for in panel (A) where only lane
3 has the X 3 probe primer while lane has X 4 probe primer; lanes 5 and 6, X 4 primer,
but see above for panel (A); lanes 7 and 8, X 5 primer; and lanes 9 and 10, X 6 primer.

the detection of single molecules, these PCR results allow us to approximate
the number of correct strands and incorrect strands present in the recovered
answer strands. Assuming that strands amplified by the primers X T

1 and X
T

6
are correct strands, at least 5 × 1011 correct strands were present in the answer
strands. Given that 500 pmols (3.0 × 1014 strands) were input to the computa-
tion, 1

64 th of these, or 4.7 × 1012 correct strands were input to the computation.
Thus approximately 11% of the correct strands were retained at the end of the
computation. Assuming that those strands amplified by the primers X T

1 and X
F

6
were a single type of incorrect strand (bearing X F

6 and X T
k for k = 1 . . . 5) there

were less than 5000 of such strands. Assuming that all types of incorrect strands
are present with this frequency means that at most 315,000 incorrect strands
were present in the answer strands. This suggests correct strands outnumbered
incorrect strands by a factor of at least 1.6 million, an enrichment from their
original proportions by a factor of 100 million.

3.4 Sequencing of the Answer Strands

Figure 6A and B show the results of sequencing the amplified answer strands
using a primer with sequence X T

1 . Figure 6 shows that there is no degeneracy
at any position, indicating that a unique computational solution was obtained.
The unique solution corresponded to x2 = T, x3 = T . . . , x6 = T . Since x1 = T
and x6 = T had already been established in the PCR step, it can be concluded



38 R.S. Braich et al.

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 5. Readout of the answer by PCR. Lanes 1 and 7, molecular size marker ladder.
Lanes 2 – 6, library. Lanes 8 – 12, diluted answer strands. Lanes 2 and 8, all four
primers. Lanes 3 and 9, X T

1 and X
T
6 probe. Lanes 4 and 10, X T

1 and X
F
6 probe. Lanes

5 and 11, X F
1 and X

T
6 probe. Lanes 6 and 10, X F

1 and X
F
6 probe.

that the answer strands correspond to x1 = T , x2 = T , x3 = T , x4 = T , x5 = T ,
and x6 = T , indicating a successful computation.

4 Prospects for Scaling Up

Whether SAT problems of greater size may be solved depends on the difficulty of
scaling up each of three procedures: design of the library strands, synthesis of the
library strands, and execution of the computation. As for the first procedure,
we note that the sequences X T

1 , . . . ,X T
6 and X F

1 , . . . ,X F
6 are a subset of 72

sequences designed for a larger 36-variable SAT problem and that sequences
for 50-variable SAT problems with the same constraints have been designed.
Assuming that longer library strands composed of these sequences perform as
well as their shorter variants, sequence design does not seem to be a limiting
factor for the solution of SAT problems with up to ten times as many variables
as that solved here.

As for the second procedure, we plan to synthesize library strands for a 20-
variable SAT problem via the ligation of three pools of shorter library strands:
two pools of 105-base long 7-variable library strands and one pool of 90-base long
6-variable library strands. The 6-variable and 7-variable library strands have al-
ready been synthesized by a mix-and-split synthesis. Each library is being tested
separately by running a capture analysis and simple computation as described
for the 6-variable library. We have just begun experiments to ligate these pools
into a full 20-variable library.

As for the third procedure, we believe that the results of our 6-variable com-
putation show that our ability to capture, release, and recover correct answer



Solution of a Satisfiability Problem 39

A T C G A T C G A T C G A T C G

A C

X6

X5

X3

X4

X2

X3

X   1 X   1 X   1 X   1

B D

T

T

T

T

T

T

F FTT

Fig. 6. Sequencing of the diluted answer strands. Termination nucleotides are shown
at the top of each lane. The primer used in each sequencing reaction is indicated at the
bottom of the lanes. Lanes (A) and (C) show sequencing of the PCR amplification of
answer strands using primers with sequences X T

1 and X
T
6 (lane 9 from Fig. 5). Lanes

(A) shows that the strands contain, as subsequences, the sequences XT
2 and XT

3 while
lanes (B) show the answer strands contain, as subsequences, part of XT

3 and all of
XT

4 , . . . , XT
6 . Lanes (B) and (D) show sequencing of the PCR amplification of answer

strands using all four primers (lane 8 from Fig. 5). The absence of sequencing product
in these lanes indicates that no strands representing any assignment including x1 = F
were present in the answer strands.



40 R.S. Braich et al.

strands is good enough to complete a successful 20-variable computation. Con-
sider that after capture in and release from 11 clause modules ∼ 11% of the
correct answer strands were recovered. This suggests that in each module ap-
proximately 82% of the correct answer strands were captured. In an analogous
20-variable computation, starting with 500 pmols of library strands, there would
be roughly 300 million correct answer strands. After passing 25 clause modules
(for the analogous SAT formula) approximately 2 million correct answer strands
would remain—enough to be easily detected by PCR.

5 Discussion

We have carried out a successful DNA computation on a 6-variable SAT prob-
lem. The correct solution was culled from 64 alternatives. This is slightly smaller
than the number of alternative solutions (512) recently handled at Princeton by
Faulhammer et al. [16] and slightly more than the number (16) handled the Uni-
versity of Wisconsin-Madison by Liu et al. [20] By solving small computational
problems, these experimentalists and others have demonstrated the viability of
several different architectures for DNA computing. It seems clear that the next
objective should be the solution of problems which are beyond the capabilities of
humans without the aid of electronic computers. Our success with a 6-variable
11-clause 3-SAT problem fortifies our view that we now possess the tools nec-
essary to carry out such a computation. We are currently in the process of
synthesizing a 20-bit library in order to solve a 20-variable SAT problem in the
near future. We are also optimistic about the prospects of building an automated
device for carrying out such computations. Despite our optimism, we must still
acknowledge that the road to a DNA computer capable of solving computational
problems which cannot be solved by electronic computers is a difficult one. In
our opinion, creation of such a molecular computer will not be accomplished by
incremental improvements in current approaches—breakthroughs will be needed.

Acknowledgements. This work was supported by grants from the National
Aeronautics and Space Administration/Jet Propulsion Laboratory, the Defense
Advanced Research Projects Agency, the Office of Naval Research, and the Na-
tional Science Foundation.

References

1. Leonard M. Adleman. Molecular computation of solutions to combinatorial prob-
lems. Science, 266:1021–1024, November 11, 1994.

2. Richard J. Lipton. DNA solution of hard computational problems. Science, 218:17–
26, 1996.



Solution of a Satisfiability Problem 41

3. Dan Boneh, Christopher Dunworth, and Richard J. Lipton. Breaking DES using
a molecular computer. In Richard J. Lipton and Eric B. Baum, editors, DNA
Based Computers: Proceedings of a DIMACS Workshop, April 4, 1995, Princeton
University, volume 27 of DIMACS: Series in Discrete Mathematics and Theoretical
Computer Science, pages 37–65, Providence, RI, 1996. American Mathematical
Society.

4. Leonard M. Adleman, Paul W. K. Rothemund, Sam Roweis, and Erik Winfree.
On applying molecular computation to the data encryption standard. Journal of
Computational Biology, 6(1):53–63, 1999.

5. N. Jonoska and S. A. Karl. A molecular computation of the road coloring problem.
In Baum and Landweber [25], pages 87–96.

6. Erik Winfree, Xiaoping Yang, and Nadrian C. Seeman. Universal computation via
self-assembly of DNA: Some theory and experiments. In Baum and Landweber
[25], pages 191–213.

7. Erik Winfree. Whiplash PCR for O(1) computing. In Proceedings of the 4th DI-
MACS Meeting on DNA Based Computers, held at the University of Pennsylvania,
June 16-19, 1998, pages 175–188.

8. Martyn Amos, Alan Gibbons, and David Hodgson. Error-resistant implementation
of DNA computations. In Baum and Landweber [25], pages 151–161.

9. Michail G. Lagoudakis and Thomas H. LaBean. 2-D DNA self-assembly for satisfi-
ability. In Proceedings of the 5th DIMACS Meeting on DNA Based Computers, held
at the Massachusetts Institute of Technology, June 14-15, 1999, pages 139–152.

10. F. Guarnieri, M. Fliss, and Carter Bancroft. Making DNA add. Science,
273(5272):220–223, 1996.

11. Q. Ouyang, P. D. Kaplan, L. Shumao, and A. Libchaber. DNA solution of the
maximal clique problem. Science, 278:446–449, 1997.

12. Nobuhiko Morimoto, Masanori Arita, and Akira Suyama. Solid phase DNA solu-
tion to the Hamiltonian Path Problem. In Rubin and Wood [24], pages 83–101.

13. Thomas H. Leete, Joshua P. Klein, and Harvey Rubin. Bit operations using a DNA
template. In Rubin and Wood [24], pages 159–171.

14. Kensaku Sakamoto, Daisuke Kiga, Ken Komiya, Hidetaka Gouzu, Shigeyuki
Yokoyama, Shuji Ikeda, Hiroshi Sugiyama, and Masami Hagiya. State transitions
by molecules. In Proceedings of the 4th DIMACS Meeting on DNA Based Comput-
ers, held at the University of Pennsylvania, June 16-19, 1998, pages 87–99.

15. Julia Khodor and David K. Gifford. Design and implementation of computational
systems based on programmed mutagenesis. In Proceedings of the 4th DIMACS
Meeting on DNA Based Computers, held at the University of Pennsylvania, June
16-19, 1998, pages 101–107.

16. Dirk Faulhammer, A. R. Cukras, Richard J. Lipton, and Laura F. Landweber.
When the knight falls: On constructing an RNA computer. In Proceedings of
the 5th DIMACS Meeting on DNA Based Computers, held at the Massachusetts
Institute of Technology, June 14-15, 1999, pages 1–7.

17. Junghei Chen, Eugene Antipov, Bertrand Lemieux, Walter Cedeño, and
David Harlan Wood. In vitro selection for a Max 1s DNA genetic algorithm.
In Proceedings of the 5th DIMACS Meeting on DNA Based Computers, held at the
Massachusetts Institute of Technology, June 14-15, 1999, pages 23–37.

18. H. Yoshida and A. Suyama. Solution to 3-SAT by breadth first search. In Pro-
ceedings of the 5th DIMACS Meeting on DNA Based Computers, held at the Mas-
sachusetts Institute of Technology, June 14-15, 1999, pages 9–20.



42 R.S. Braich et al.

19. Masahito Yamamoto, Jin Yamashita, Toshikazu Shiba, Takuo Hirayama, Shige-
haru Takiya, Keiji Suzuki, Masanabu Munekata, and Azuma Ohuchi. A study
on the hybridization process in DNA computing. In Proceedings of the 5th DI-
MACS Meeting on DNA Based Computers, held at the Massachusetts Institute of
Technology, June 14-15, 1999, pages 99–108.

20. Q. Liu, L. Wang, A. G. Frutos, A. E. Condon, R. M. Corn, and L. M. Smith. DNA
computing on surfaces. Nature, 403:175–179, 2000.

21. Sam Roweis, Erik Winfree, Richard Burgoyne, Nickolas V. Chelyapov, Myron F.
Goodman, Leonard M. Adleman, and Paul W. K. Rothemund. A sticker-based
model for DNA computation. Journal of Computational Biology, 5(4):615–629,
1998.

22. Kalim Mir. A restricted genetic alphabet for DNA computing. In Baum and
Landweber [25], pages 243–246.

23. A. R. Cukras, Dirk Faulhammer, Richard J. Lipton, and Laura F. Landweber.
Chess games: A model for RNA-based computation. In Proceedings of the 4th DI-
MACS Meeting on DNA Based Computers, held at the University of Pennsylvania,
June 16-19, 1998, pages 27–37.

24. Harvey Rubin and David Harlan Wood, editors. DNA Based Computers III: DI-
MACS Workshop, June 23-25, 1997, volume 48 of DIMACS: Series in Discrete
Mathematics and Theoretical Computer Science., Providence, RI, 1999. American
Mathematical Society.

25. Eric B. Baum and Laura F. Landweber, editors. DNA Based Computers II: DI-
MACS Workshop, June 10-12, 1996, volume 44 of DIMACS: Series in Discrete
Mathematics and Theoretical Computer Science., Providence, RI, 1998. American
Mathematical Society.



Diophantine Equations and Splicing: A New
Demonstration of the Generative Capability of

H Systems

Pierluigi Frisco

L.I.A.C.S., Leiden University,
Niels Bohwerg 1, 2333 CA Leiden, The Netherlands

pier@liacs.nl

Abstract. Systems based on the splicing operation are computationally
complete. Usually demonstrations of this are based on simulations of
type-0 grammars. We propose a different way to reach this result by
solving Diophantine equations using extended H system with permitting
context. Completeness then follows from Matiyasevich’s theorem stating
that the class of Diophantine sets is identical to the class of recursive
enumerable sets.
Solutions to a Diophantine equation are found in parallel. The numbers
are coded in base one.

1 Introduction

Recently, many different formal models of computation have been proposed un-
der the inspiration of biological processes. DNA based computation, generally
speaking, considers the transformation of biological molecules as computational
steps. Splicing systems (see [5], [9]) are a generative mechanism based on the
splicing operation as a model of DNA recombination. If these systems have fi-
nite sets of axioms and rules defining splicing they generate regular languages
(see details in [12]). Keeping finite both sets the generative power can only be
increased by introducing certain control systems. In this way splicing systems
can generate recursive enumerable languages.

For all proposed control systems the demonstration of this universality is
based on the simulation of type-0 grammars (see [3] and [1] for permitting and
forbidding context; [10] for target languages, [11] for programmed and evolving
H systems, [7] for double splicing, [2] and [3] for multisets).

Here we obtain the same result by a totally different approach. We generate a
recursive enumerable set of vectors using the correspondence of the class of Dio-
phantine sets with the one of Turing semi-decidable sets defined by Matiyasevich
theorem described in [6].

An extended H system with permitting context solving in parallel Diophan-
tine equations is described in Section 4. Its operation corresponds to the parallel
execution of a Turing machine on all its possible inputs. The H system, called
solver, receives as input a polynomial P (x̄) and, in parallel, computes the value

A. Condon (Ed.): DNA 2000, LNCS 2054, pp. 43–52, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



44 P. Frisco

of P for all possible non-negative integer values of its variables. Final strings
indicate the value of the unknowns for solutions of the polynomial equation
P (x̄) = 0.

Slightly modifying the (final alphabet of the) system it is possible to gener-
ate all strings indicating the value of the polynomial for certain values of the
unknowns; in this case the system is a generator of pairs (x̄, P (x̄)). The specific
solutions of the equation P (x̄) = N can be found by another H system, called
filter, receiving a specific number N as input and selecting, from all the strings
created by the generator, the ones giving N as result.

This last strategy (described in Section 5) corresponds to what in [8] is called
computing by carving.

2 An Overview on Diophantine Equations

We give definitions strictly related with our work; more general information may
be found in [6].

A Diophantine equation is an equation of the form:

D(x1, ..., xn) = 0, (1)

where D is a polynomial with integer coefficients. An equation as (1) can express
a system of k equations. This is because the set of solutions of the system

D1(x1, ..., xn) = 0
...

Dk(x1, ..., xn) = 0

coincides with the set of solutions of the single equation

D2
1(x1, ..., xn) + ... + D2

k(x1, ..., xn) = 0

Given a Diophantine equation it is possible to reduce the problem of finding
whether it has an integer solution to the one of deciding whether it has non-
negative solution and vice-versa. To see this let us consider an equation as (1)
and the system

D(x1, ..., xn) = 0
x1 = y2

1,1 + y2
1,2 + y2

1,3 + y2
1,4

... (2)
xn = y2

n,1 + y2
n,2 + y2

n,3 + y2
n,4

Any solution in arbitrary integers of the system (3) includes a solution of
(1) in non-negative integers. The converse is also true: any solution of (1) in
non-negative integers x1, ..., xn can be expressed by integer values of y1,1, ..., yn,4
in (3). This relies on Lagrange’s theorem stating that every non-negative integer



Diophantine Equations 45

is the sum of four squares of integers. As said before, the system (3) can be
expressed by a single equation

E(x1, ..., xn, y1,1, ..., yn,4)

which is solvable in integers if and only if the original equation is solvable in
non-negative integers.

A family of Diophantine equations is a relation of the form

D(a1, ..., am, x1, ..., xn) = 0 (3)

where D is a polynomial with non-negative integer variables a1, ..., am, x1, ..., xn.
a1, ..., am are called parameters, while x1, ..., xn unknowns. Fixing values of the
parameters results in the particular Diophantine equations that comprise the
family. A family of Diophantine equations should not be confused with an infinite
system. In the family we consider separately each polynomial obtained by fixing
the parameters.

By varying the values of the parameters it is possible to obtain, in the same
family, equations that have solutions and others that do not. The family of
Diophantine equation (3) defines a set M composed by the m-tuples of values
of the parameters for which there is a solution of (3)

〈a1, ..., am〉 ∈ M ⇐⇒ ∃x1...xn[D(a1, ..., am, x1, ..., xn) = 0].

A set defined in this way is called Diophantine.
Hilbert’s tenth problem asks a universal method (i.e., an algorithm) for de-

ciding the solvability of a Diophantine equation with integer coefficients. Yuri
Matiyasevich (see [6]) demonstrated that the class of Diophantine sets is identi-
cal to the class of Turing recursively enumerable (RE) sets of integer tuples. This
implies that the existence of a solution cannot be decided. However, considering
that a RE set of vectors can be enumerated by a finitely described procedure,
our algorithm executes this procedure in parallel generating non-negative integer
solutions to a Diophantine equation.

3 An Overview on Splicing

We give definitions strictly related with our work; more general information
may be found in [12]. Consider an alphabet V and two special symbols, # and
$ not in V . A splicing rule is a string of the form r = u1#u2$u3#u4, where
u1, u2, u3, u4 ∈ V ∗. For such a splicing rule r and strings x, y, z, w ∈ V ∗ we
write:

(x, y) `r (z, w) iff x = x1u1u2x2, y = y1u3u4y2,

z = x1u1u4y2, w = y1u3u2x2,

for some x1, x2, y1, y2 ∈ V ∗,

indicating that x and y splice according to r giving z and w.



46 P. Frisco

Based on this operation the notion of an H scheme can be defined as pairs
σ = (V, R) where V is an alphabet and R ⊆ V ∗#V ∗$V ∗#V ∗ is a set of splicing
rules. For an H scheme and a language L ⊆ V ∗ we define

σ(L) = {z ∈ V ∗ | (x, y) `r (z, w) or (x, y) `r (w, z),
for some x, y ∈ L, r ∈ R, w ∈ V ∗},

σ0(L) = L,

σi+1(L) = σi(L) ∪ σ(σi(L)), i ≥ 0, and

σ∗(L) =
⋃

i≥0

σi(L).

If we consider two families of languages FL1 and FL2, we define:

H(FL1, FL2) = {σ∗(L) | L ∈ FL1 and σ = (V, R), R ∈ FL2}.

We denote by FIN, REG the families of finite and of regular languages
respectively. We have (see details in [12])

FIN ⊂ H(FIN, FIN) ⊂ REG.

An extended H system is a construct γ = (V, T, A, R), where V and T are al-
phabets such that T ⊆ V (T is called terminal alphabet), A is a language on V
(A is the set of axioms), and R is a set of splicing rules over V . The language
generated by γ is L(γ) = σ∗(A) ∩ T ∗, where σ is the H scheme (V, R).

If both sets A and R are finite, then L(γ) is regular.
If we want an H system having A and R finite generating more than regular

languages, then a control has to be added to the splicing operation. There are
many classes of controlled systems and most of them characterize the family of
recursively enumerable languages (see [3] and [12]).

The type of control we choose in order to implement the solver uses permitting
contexts this means that rules may only be applied when given strings (the
context) are present. Formally an extended H system with permitting contexts is a
quadruple γ = (V, T, A, R), where V is an alphabet, T ⊆ V , A is a finite language
over V , and R is a finite set of triples p = (r; C1, C2), with r = u1#u2$u3#u4
being a splicing rule over V and C1, C2 being finite subsets of V ∗. For x, y, z, w ∈
V ∗ and p ∈ R, p = (r; C1, C2), we define (x, y) `p (z, w) iff (x, y) `r (z, w), every
element of C1 appears as a substring in x and every element of C2 appears as a
substring in y; when C1 = ∅ and/or C2 = ∅, then no condition on x, and/or y,
is imposed.

To understand better the work of H systems used in the subsequent section
of this paper, all triples are numbered.

4 Solver

Considering what described is Section 2 it is easy to understand that the creation
of a system based on splicing capable to find all non-negative integer solutions of



Diophantine Equations 47

a Diophantine equation is enough to demonstrate that it can generate the class
of RE set of vectors. In this section we describe an extended H system γD with
permitting contexts which receives as input a polynomial P (x̄) and generates
strings defining the solutions of the polynomial equation P (x̄) = 0.

As we will see most part of the work of γD will be done at the ends of the
strings. These ends have normally the form hβ , tβ (h to the left means head and
t to the right means tail) where β defines the state of the string. Symbols s
present in strings, together with h and t (all with subscript) are used to define
permitting conditions.

Moreover to rotate a string will mean to move symbols between h and t
(with whatever subscript) from left to right or from right to left. In this context
the symbols s are important to keep track of the begin and the end of the
rotated substring. For instance the clockwise rotation of two symbols of the
string hsbv1v2v3set will bring it to hv3sesbv1v2t. Note how, even if rotated, the
”substring” v1v2v3 from sb to se is unchanged.

Basic operation. Rotation of a string (together with substitution, deletion
or insertion of one or two rotated symbols) is the basic step in the system we
describe below. Each of these operations is performed using four triples. Here
we give an example for anti-clockwise rotation with substitution of an element.
The generalization to the other cases is easy and left to the reader.

Let us consider the string h1abs1ct1 which we want to rotate anti-clockwise
by one symbol, changing a into A. In this way we obtain h1bs1cAt1. The splicing
uses the string hAAtA present as an axiom in the system.

The operation is performed by four splicing operations, the vertical bar (|)
indicates where the splicing occurs:

h1a | bs1ct1 hAbs1c | t1 hA | bs1cAtA h1bs1cA | tA h1bs1cAt1
hA | AtA `1 h1a | AtA `2 h1 | at1 `3 hAa | t1 `4 hAatA

The triple 1 = (h1a#$hA#AtA; {s1}, ∅) is used and h1a is replaced by hA.
Now the string containing s1 has also hA and t1, as a sign that an a has been
removed from the left side. The subscript of h is changed into A just to keep
memory of what was just done.

After this the triple 2 = (#t1$h1a#AtA; {hA, s1}, ∅) changes t1 into AtA in
the string containing hA and s1.

At this point the string with s1 has completed the operation of rotating/
substituting but it is in state A. Two more triples 3 = (hA#$h1#at1; {s1, tA}, ∅)
and 4 = (#tA$hAa#t1; {h1, s1}, ∅) change its state back into 1 so to obtain what
we want.

Note that this sequence of splicing is purely consecutive: both strings ob-
tained in one splicing step are used in the next one. This reminds us of the
double splicing discussed in [7].

In the strings used by the system, numbers are expressed in base one, upper-
scripts indicate the repetition of symbols.

We do no describe the system γD in all details but we give a comprehensible
explanation of the way it works through its basic steps. This is done using



48 P. Frisco

an example: the computation of the polynomial x2y + 3y2z − z2 with values
x = 2, y = 1, z = 4.

Let us consider ∆ = {x, y, z} the set of unknowns in the polynomial.
The polynomial in the example will be represented in γD by the axiom h1sb+

dx̃2ỹ+d3ỹ2z̃−dz̃2set1. The symbols sb and se indicate respectively the begin and
the end of the polynomial; α̃, α ∈ ∆ indicate the unknowns; + and − indicate
sum and subtraction respectively and d’s are used to code coefficients.

The system evolves through three logical parts:
creation. Strings defining values for unknowns in the polynomial are generated.

These have the form hα̂α̂ant, n ≥ 0, α ∈ ∆ and a’s represent the value of α
coded in base one.

union. The strings defining the polynomial are joined with the ones created in
the previous phase, one for each unknown. Strings obtained in this phase are
called working strings.

computation. The polynomial is computed using values present in the working
string.

Creation. The symbols hα̂α̂t, α ∈ ∆ and haat are axioms. They can be
spliced by (#t$ha#a; {hα̂}, ∅) so to obtain hα̂α̂at (α ∈ ∆). The same triple
can be iteratively applied to the result of the previous splicing and other copies
of the axiom haat so to create hα̂α̂ant. In this way a value (n) is associated to
an unknown (α).

Union. The strings representing the polynomial are joined with the
values of its unknowns following a fixed order driven by permitting con-
ditions. As an example for ∆ = {x, y, z} a string containing sb and
h1 can join a string containing hẑ to assign a value to z. The triple
(h1#$#t; {sb}, {hẑ}) can splice h1sb + dx̃2ỹ + d3ỹ2z̃ − dz̃2set1 with hẑ ẑa4t so to
obtain hẑ ẑa4sb +dx̃2ỹ+d3ỹ2z̃−dz̃2set1. It is easy to imagine that this operation
can be repeated on this last string (using the triples (hẑ#$#t; {sb}, {hŷ}) and
(hŷ#$#t; {sb}, {hx̂})) so to add the value for the other unknowns (y and x re-
spectively) present in the polynomial until hxx̂a2ŷaẑa4sb+dx̃2ỹ+d3ỹ2z̃−dz̃2set1
is obtained. When this happens the state of the working string is changed into
2 using two additional triples.
As the association of values to unknowns and their union with the polynomial
are made in a non-deterministic way we expect all possible combinations of
variables to be present in the system.

Computation. For each working string created the system will compute
the value of the polynomial for the values associated to the unknowns. This
operation is composed of three phases: substitution, multiplication and addi-
tion/subtraction.

Substitution. Reading the polynomial from sb to se the first occurrence of
a variable of the first monomial is substituted with c’s representing its value.



Diophantine Equations 49

Any remaining occurrence of variables in the polynomial are not substituted at
this moment.

The substitution of an unknown with its value is performed rotating anti-
clockwise the working string in state 2 until the first unknown, in our example x̃,
is close to the head (so that h2x̃ is present). In the example we obtain h2x̃

2ỹ +
d3ỹ2z̃ − dz̃2sex̂a2ŷaẑa4sb + dt2. At this point the unknown is removed and a
marker M is inserted at its place, the state is changed into x (as we have to
copy the value of x) and the string is rotated clockwise until x̂tx is present
(hxa2ŷaẑa4sb + dx̃ỹ + d3ỹ2z̃ − dz̃2sex̂tx in the example). One per time each a
present on the left of the working string is copied before the marker M . Each
a is marked (to keep memory that it has been copied) and, rotating the string
anti-clockwise, a symbol c is added in the polynomial.

At the end of the operation all markers are removed, to recreate the previous
situation, and the state is changed into 3. If the value associated to a variable
is 0 (no a is present on the left side) the state of the working string is changed
and the monomial removed.

In our example the substitution of the first variable in the first monomial
brings to h3x̂a2ŷaẑa4sb + dc2x̃ỹ + d3ỹ2z̃ − dz̃2set3.

Multiplication. In this phase the value of a just substituted variable is
multiplied by the coefficient of the monomial so to obtain a new coefficient
for a ”reduced” monomial. Considering the first monomial in our example we
pass from +dx̃2ỹ to +dc2x̃ỹ with a substitution, and then to +d2x̃ỹ with a
multiplication. In general in a string in state 3 a multiplication is performed: the
number represented by d’s is multiplied by the number represented by c’s. This
is done by subsequent additions: for each c in the monomial we insert as many
i’s as d’s are present.

The implementation of the multiplication is explained using as example the
string hAs1d

3c3tA.

state A : The string is rotated clockwise until to have hAc and dtA (this is
bound to happen as dc is present in the string). Then the leftmost c is
removed and the state is changed into B.
When hAs1 and dtA are present we have dealt with every c. The state is
changed into C.

state B : Each d present on the right is removed and for each d removed id is
added to the left, i’s are simply moved from right to left.
When s1tB is present the state changes into A.

state C : Rotating the string all d’s are removed and i’s are changed into d’s.

For our example rotating clockwise hAs1d
3c3tA we obtain hAc3s1d

3tA. The
two conditions indicated for state A hold so this string is spliced so to have
hBc2s1d

3tB . Now for each d on the right id is added to the left so to obtain
hB(id)3c2s1tB . Then the state is changed into A and the string is rotated anti-
clockwise until hAc2s1(id)3tA. A c has been removed and 3 i’s have been added:
one addition step of the multiplication has been performed.



50 P. Frisco

As hAc and dtA are present the leftmost c is removed and the state is changed
into B so to have hBcs1(id)3tB . Now, rotating anti-clockwise the string, each d
present on the right is removed and for each d removed id is added to the left.
The symbols i’s are simply moved from right to left. Doing this the number of
d’s remains always the same while i’s increase.

The repetition of these operations brings to hAs1(i3d)3tA, at this point the
state is changed into C.

If dtC is present in a string it is changed with tC , in this way a d is removed;
if itC is present in a string the rightmost i is removed and a d is added to the left
side of the string. In this way the string hCd9s1tC is obtained and d’s indicate
the result of the multiplication.

After a multiplication the state of a working string is changed back into
2 and the process of substitution continues: if there is another element in the
same monomial it is substituted with c’s and the multiplication is performed,
otherwise the substitution continues with the first occurrence of variable of the
next monomial (if present).

The implementation of all substitutions and multiplications to the work-
ing string defining the polynomial will bring to h3x̂a2ŷaẑa4sb+d4+d12−d16set3.

Addition/subtraction. This last part is implemented in a simple way:
removing + or − between two monomials with the same sign or performing the
subtraction between two monomials with different sign. When h2se is present in
a working string all monomials have been computed. The string changes state
into 4 and is rotated until h4sb is present (in the example we have h4sb + d4 +
d12 − d16sex̂a2ŷaẑa4t4. Then sb is moved to the right and the state is changed
according with the sign of the first monomial. The symbol indicating the sign is
also moved to the right. In our case the sign is positive so the state is changed
into + (h+d4 +d12 −d16sex̂a2ŷaẑa4sb + t+ in the example). Now working strings
are rotated anti-clockwise until h++ or h+− are present.

When h++ is present two monomials with the same sign have to be added: the
leftmost + is removed and the working string continues to be rotated. Similarly
the leftmost − is removed from h−−. In the example we pass from the string
h+ + d12 − d16sex̂a2ŷaẑa4sb + d4t+ to h+d12 − d16sex̂a2ŷaẑa4sb + d4t+.

When h+− or h−+ are present two monomials with opposite sign have to be
added (this means that a subtraction has to be performed). One element is on
the right of the string, the other on the left. If h+− is present in a working string
the leftmost − is removed and the state changes into 5−; if h−+ is present in a
working string the leftmost + is removed and the state changes into 5+. As in
our example we have h+−d16x̂a2ŷaẑa4sb +d16t+ the string h5−d16x̂a2ŷaẑa4sb +
d16t5− is obtained. At this point one element from the left and one from the right
are removed. When h5pq, p, q ∈ {+,−} is present q is removed and the state is
changed into h4; when h5pd or h5pse, p ∈ {+,−} is present the state is changed
into 4 and p is added after h4. A string in state 4 is rotated until we have h4sb

so to restart addition and subtraction from the begin of the polynomial.



Diophantine Equations 51

If sb + se or sb − se are present in a string in state 3 it means that 0 has been
obtained as final value. In this case the state is changed into 6 and the string is
rotated until h6x̂ is present. Ends are changed into h and t.

In our example we obtain hx̂a2ŷaẑa4sb − set, i.e., the polynomial has value
0 for the given values of the variables.

As we choose the terminal alphabet T = {a, α̂, h, sb, se, t,+,− | α ∈ ∆} the
obtained string is final and codes a solution of the polynomial equation P (x̄) = 0.

5 Final Remarks

Simply changing the final alphabet of γD it is possible to generalize it from a
solver of the polynomial equation P (x̄) = 0 to a system computing the value of
the polynomial for all non-negative integer values of its variables.

The output language created by such a system, called generator, can be given
as input to another one, called filter, receiving also a specific number N as input
and selecting, from all the string created by the generator, the ones giving that
number as result. Figure 1 describes this idea.

generator -(x̄, P (x̄)) filter

P (x̄) = N

?

N

-x̄

Fig. 1. Generator + filter

This mode of operation, introduced in [8], where was called computing by
carving and implemented in [4], is not very usual in computer science or in
computability theory: to produce a ”complete data pool” and filter it so that
only a particular kind of strings (solution) remains.

In this way parallelism is used at a higher level. Usually a problem is divided
into smaller problems solved in parallel way; here a whole class of instances of
a problem (to compute a polynomial for all values of its variables) is solved in
parallel.

It is possible to apply this approach to a wider spectrum of problems. For
instance, we may consider to have a generator of solutions in a certain interval
and then, using the filter, to find the solution as close as possible to our needs.

Even if similar the idea of ‘filtering’ should not be confused with the one
applied in a laboratory where beads or single strands of DNA are used to fishing
out target molecules from a tube. In this case, the molecules are selected by
considering a pattern present in it. Our filtering is a computing step.



52 P. Frisco

Acknowledgments. I thank the Universitá degli Studi di Milano for its fi-
nancial support to my PhD, the Universiteit Leiden, personified by Prof. G.
Rozenberg, accepting me as PhD student in his friendly group of research.

A special thank Gheorghe Păun for his stimulating ideas and to Hendrik Jan
Hoogeboom who read the draft copy of this paper and whose suggestions were
really valuable for the final one.

References

1. E. Csuhaj-Varju, R. Freund, L. Kari, Gh. Păun: DNA computing based on splic-
ing: universality results. Proc. First Annual Pacific. Symposium in Biocomputing,
Hawaii, 1996 (L. Hunter, T. E. Klein, eds.), World Scientific, Singapore, 1996, 179
- 190

2. K. L. Denninghoff, R. W. Gatterdam: On the undecidability of splicing systems.
International Journal of Computer and Mathematics, 27 (1989), 133 - 145

3. R. Freund, L. Kari. G. Păun: DNA computing based on splicing. The existence
of universal computers. Technical Report 185-2/FR-2/95, Technical Univ. Wien,
1995, and Theories of Computer Sci. in press

4. P. Frisco: Parallel Arithmetic with Splicing. To appear in Romanian Journal of
Information Science and Technology (ROMJIST)

5. T. Head, Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors, Bulletin of Mathematical Biology, 49 (1987),
737–759

6. Yuri Matiyasevich: Hilbert’s tenth problem. MIT Press Cambridge, London, 1993
7. Gh. Păun: DNA computing based on splicing: universality results. Proceedings of

the Second Internal Colloquium on Universal Machines and Computations, Metz,
1998, Vol. I, 67 - 91

8. Gh. Păun, (DNA) Computing by carving, Soft Computing, 3, 1 (1999), 30 - 36
9. Gh. Păun, On the splicing operation, Discrete Appl. Math., 70 (1996), 57–79

10. Gh. Păun: Splicing systems with targets are computationally complete. Inform.
Processing Letters, 59 (1996), 129 - 133

11. Gh. Păun, G. Rozenberg, A. Salomaa: Computing by splicing. Programmed and
evolving splicing systems. IEEE Inter. Conf. on Evolutionary Computing, Indi-
anapolis, 1997, 273 - 277

12. Gh. Păun, G. Rozenberg, A. Salomaa: DNA Computing. Springer-Verlag, 1998



About Time-Varying Distributed H Systems

Maurice Margenstern1 and Yurii Rogozhin2

1 Institut Universitaire de Technologie,
Université de Metz, Metz, France

LITA, EA 3097
(Laboratoire d’Informatique Théorique et Appliquée)

margens@antares.iut.univ-metz.fr
2 Institute of Mathematics and Computer Science of the

Academy of Sciences of Moldova
rogozhin@math.md

Abstract. A time-varying distributed H system (TVDH system) is a
splicing system which has the following feature: at different moments
one uses different sets of splicing rules (these sets are called components
of TVDH system). The number of components is called the degree of the
TVDH system. The passing from a component to another one is specified
in a cycle. It was proved by both authors (1999) that TVDH systems of
degree 2 generate all recursively enumerable languages. It was made by
modelling Turing machines and, in that modelling, every language is
generated ”step by step” or ”word by word”. This solution is not a fully
parallel one. A.Paun (1999) presented a complete parallel solution for
TVDH systems of degree 4 by modelling type 0 formal grammars. Now we
improved A.Paun’s result by reducing the number of components of such
TVDH systems down to 3. This question is open for 2 components, i.e.
is it possible to construct TVDH systems of degree 2 which completely
uses the parallel nature of molecular computations based on splicing
operations (say model type 0 formal grammars)?
We consider also original G.Paun’s definition of TVDH systems and
suggest a slightly different definition of TVDH systems based on the
definition of H systems – extended time-varying distributed H systems
(ETVDH systems). For this new definition we proved that ETVDH sys-
tems with one component generate exactly the set of all regular languages
and that with two components, they generate exactly the set of all re-
cursively enumerable languages.

1 Introduction

Starting from [1], a grounding paper on splicing computations, a lot of studies
were devoted to various extensions of H systems originating from [3]. In par-
ticular, a lot of them point at the possible universality power of such systems.
Extending the original definition, paper [11] defined the notion of test tube and
proved the universality of an extended H system with a finite number of test
tubes. But no indication on the number of test tubes needed in order to obtain

A. Condon (Ed.): DNA 2000, LNCS 2054, pp. 53–62, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



54 M. Margenstern and Y. Rogozhin

universality was given in [11]. That number was first set to 9 [2], then to 6 [12],
and finally established to 3 in [16]. The latter result is very near to the real
frontier between decidability and undecidability or, in other terms, between the
possibility and the impossibility of predicting the eventual behaviour of such
systems, depending on the number of test tubes. Indeed, as it is known that for
a single test tube, generated languages are regular [15], it remains to examine
the case of two test tubes, which is still open up to now.

Time-varying distributed H systems were recently introduced in [12], [13,
14] as another theoretical model of biomolecular computing (DNA-computing),
based on splicing operations. Instead of considering test tubes, these models
introduce components, later see the formal definition, which cannot all be used
at the same time but one after another, periodically.

This aims at giving an account of real biochemical reactions where the work
of enzymes essentially depends on the environment conditions. In particular, at
any moment, only a subset of all available rules are in action. If the environment
is periodically changed, then the active enzymes change also periodically.

In [13], it is proved that 7 different components are enough in order to gen-
erate any recursively enumerable language. Recently, see [6,7], both authors
proved that two components are enough to construct a universal time-varying
distributed H system, i.e. a time-varying distributed H system, capable of sim-
ulating the computation of any Turing machine. Universality of computation
and generating any recursively enumerable language are equivalent properties,
but it is a priori not necessarily true, that the universality of some time-varying
distributed H system with two components entails that time-varying distributed
H systems generate all recursively enumerable languages, with only two compo-
nents. We proved in [8] that this is the case: 2 different components are enough
in order to generate any recursively enumerable language. That result was pre-
sented by both authors at FBDU’98, satellite workshop of MFCS/CSL’98 Federal
Conference, August 22 - 30, 1998, Brno, Czech Republic. The proof was made by
modelling Turing machines and, whithin that frame, every language is generated
”step by step” or ”word by word”.

In the meanwhile in [9], it was proved that time-varying distributed H sys-
tems with 4 components generate all recursively enumerable languages. That
solution by A.Paun is considered as a ”parallel” one. Indeed, although a formal
definition of a parallel DNA computation is not known, it is generally agreed
that if a given family of systems is able to mimic any type 0 formal grammar,
such a computation can be considered as a paradigm of parallel computation.
So, A.Paun’s result about TVDH systems of degree 4 can be considered as a
universal parallel DNA computation.

Now we improved A.Paun’s result by reducing the number of components
of TVDH systems which model type 0 formal grammars down to 3. The corre-
sponding question for 2 components remains open.

We consider also G.Paun’s original definition of TVDH systems and suggest
a slightly different definition of such systems based on the definition of H systems
(so-called extended TVDH systems or ETVDH systems). For ETVDH systems



Time-Varying Distributed H Systems 55

we proved that these systems with one component generate exactly the set of
all regular languages and with two components exactly the set of all recursively
enumerable languages.

Accordingly, our paper settles a frontier between decidability and undecid-
ability for extended time-varying distributed H systems in terms of the number
of their components: two is the smallest required number of components in order
to generate all recursively enumerable sets.

The question of the status of time-varying distributed H system of degree
one is still open.

We consider the ”parallel” and ”nonparallel” aspects also for ETVDH sys-
tems. Our solution for ETVDH systems of degree 2 is the same as for TVDH
systems of degree 2 and so it is not a ”parallel” one. Therefore there is a question:
how many components are needed for ETVDH systems to generate any recur-
sively enumerable languages in a parallel fashion? A partial answer is given in
[19]: ETVDH systems of degree 4 generate any recursively enumerable language
by modelling type 0 formal grammar. Accordingly, that solution is ”parallel”.

2 Basic Definitions

We recall some notions. An alphabet V is a finite, non-empty set whose elements
are called letters. A word (over some alphabet V ) is a finite (possibly empty)
concatenation of letters (from V ). The empty concatenations of letters is also
called the empty word and is denoted by ε. The set of all words over V is denoted
by V ∗. A language (over V ) is a set of words (over V ).

A formal grammar (of type 0) G is a tuple G = (N, T, P, S) of an alphabet
N of so-called non-terminal letters, an alphabet T of so-called terminal letters,
with N ∩T = ∅, an initial letter S from N , and a finite set P of rules of the form
u → υ with u, υ ∈ (N ∪ T )∗. Note that u contains at least one symbol from N .
Any rule u → υ ∈ P is a substitution rule allowing to substitute any occurrence
of u in some word w by υ.

Formally, we write w ⇒G w′ if there is a rule u → υ in P and words w1, w2 ∈
(N ∪ T )∗ with w = w1uw2 and w′ = w1υw2. We denote by ⇒∗

G the reflexive
and transitive closure of ⇒. I.e., w ⇒∗

G w′ means that there is an integer n and
words w1, · · · , wn with w = w1, w

′ = wn and wi ⇒G wi+1 for all i, 1 ≤ i < n.
The sequence w1 ⇒ w2 ⇒ · · · ⇒ wn is also called a computation (from w1

to wn of length n − 1). A terminal word is a word in T ∗; all terminal words
computable from the initial letter S form the language L(G) generated by G.
More formally, L(G) def= {w ∈ T ∗; S ⇒∗ w}.

An (abstract) molecule is simply a word over some alphabet. A splicing rule
(over alphabet V ), is a quadruple (u1, u2, u

′
1, u

′
2) of words u1, u2, u

′
1, u

′
2 ∈ V ∗,

which is often written in a two dimensional way as follows:
u1 u2
u′

1 u′
2
.

A splicing rule r = (u1, u2, u
′
1, u

′
2) is applicable to two molecules m1, m2 if

there are words w1, w2, w
′
1, w

′
2 ∈ V ∗ with m1 = w1u1u2w2 and m2 = w′

1u
′
1u

′
2w

′
2,



56 M. Margenstern and Y. Rogozhin

and produces two new molecules m′
1 = w1u1u

′
2w

′
2 and m′

2 = w′
1u

′
1u2w2. In this

case, we also write (m1, m2) `r (m′
1, m

′
2).

A pair h = (V, R), where V is an alphabet and R is a finite set of splicing
rules, is called a splicing scheme or an H scheme.

For an H scheme h = (V, R) and a language L ⊆ V ∗ we define:

σh(L) = σ(V,R)(L) def= {w, w′ ∈ V ∗|∃w1, w2 ∈ L : ∃r ∈ R : (w1, w2) `r (w, w′)}.

A Head-splicing-system [3,4], or H system, is a construct:

H = (h, A) = ((V, R), A),

which consists of an alphabet V , a set A ⊆ V ∗ of initial molecules over V , the
axioms, and a set R ⊆ V ∗ × V ∗ × V ∗ × V ∗ of splicing rules. H is called finite if
A and R are finite sets.

For any H scheme h and any language L ∈ V ∗ we define:

σ0
h(L) = L,

σi+1
h (L) = σi

h(L) ∪ σh(σi
h(L)),

σ∗
h(L) = ∪i≥0σ

i
h(L).

The language generated by H system H is defined as L(H) def= σ∗
h(A).

Thus, the language generated by H system H is the set of all molecules that
can be generated in H starting with A as initial molecules by iteratively applying
splicing rules to copies of the molecules already generated.

A time-varying distributed H system (of degree n, n ≥ 1), (TVDH system)
is a construct:

D = (V, T, A, R1, R2, . . . , Rn),

where V is an alphabet, T ⊆ V is a terminal alphabet, A ⊆ V ∗ is a finite set of
axioms, and components Ri are finite sets of splicing rules over V, 1 ≤ i ≤ n.

At each moment k = n · j + i, for j ≥ 0, 1 ≤ i ≤ n, only component Ri is
used for splicing the currently available strings. Specifically, we define

L1 = A,
Lk+1 = σhi

(Lk), for i ≡ k(mod n), k ≥ 1, 1 ≤ i ≤ n, hi = (V, Ri).

Therefore, from a step k to the next step, k + 1, one passes only the result of
splicing the strings in Lk according to the rules in Ri for i ≡ k(mod n); the
strings in Lk that cannot enter a splicing are removed.

The language generated by D is, by definition:

L(D) def= (∪k≥1Lk) ∩ T ∗.

We denote by REG the set of all regular languages, by RE the set of all re-
cursively enumerable languages, by V DHn, n ≥ 1, the family of languages
generated by time-varying distributed H systems of degree at most n, and by
V DH∗ the family of all languages of this type.



Time-Varying Distributed H Systems 57

3 TVDH Systems of Degree 3

Theorem 1. For any type 0 formal grammar G = (N, T, P, S) there is a TVDH
system DG = (V, T, A, R1, R2, R3) of degree 3 which simulates G and L(G) =
L(DG).

Proof. We construct DG = (V, T, A, R1, R2, R3) as follows. Let be N ∪T ∪{B} =
{a1, a2, . . . , an} (an = B) and B /∈ {N ∪ T}.

Alphabet V = N ∪T ∪{B}∪{X, Y, Z, Xi, Yi, X
′
j , Y

′
j , X ′′

j , Y ′′
j , X ′, Y ′, Z ′, Z ′′},

1 ≤ i ≤ n, 1 ≤ j ≤ n − 1.
The terminal alphabet is T , the same as for the formal grammar G.
Axioms A = {XSBY }∪ {ZvYi,∃u : u → vai ∈ P, i ∈ {1, . . . , n − 1}} ∪

{ZYi, X
′
jZ, X ′Z, XiaiZ, ZY ′′

j , XjZ, XZ, ZY ′
j , ZY ′, X ′′

j Z, ZY, Z′, Z ′′, 1 ≤ i ≤ n,
1 ≤ j ≤ n − 1}.

Component R1.
ε uY1.1 :
Z vYi

∃u : u → vai ∈ P, i ∈ {1, . . . , n − 1},

ε aiY1.2 :
Z Yi

1 ≤ i ≤ n,

Xj ε1.3 :
X ′

j−1 Z
2 ≤ j ≤ n,

X1 ε1.4 :
X ′ Z

ε Y ′′
j1.5 :

Z Yj
1 ≤ j ≤ n − 1,

ε aiuY1.6 :
Z Yi

∃u : u → ε ∈ P, 1 ≤ i ≤ n,

Component R2.
X ε2.1 :

Xiai Z
1 ≤ i ≤ n,

ε Y ′
j2.2 :

Z Y ′′
j

1 ≤ j ≤ n − 1,

X ′′
j ε2.3 :

Xj Z
1 ≤ j ≤ n − 1,

X ′ ε2.4 :
X Z

X ′ ε2.5 :
ε Z ′

Component R3.
ε Yj3.1 :
Z Y ′

j−1
2 ≤ j ≤ n,

X ′
j ε3.2 :

X ′′
j Z

1 ≤ j ≤ n − 1,

ε Y13.3 :
Z Y ′

ε Y ′
3.4 :

Z Y
ε BY ′

3.5 :
Z ′′ ε

Note.
Components R1, R2 and R3 also contain the following rules:
α ε
α ε

for each axiom α ∈ A, except XSBY .

Details.

Our simulation is based on the method of rotating words [10] and the corre-
sponding technique that are proposed by G.Paun [13]. Let us recall them briefly.



58 M. Margenstern and Y. Rogozhin

For any word w = w′w′′ ∈ (N ∪ T )∗ of formal grammar G say that word
Xw′′Bw′Y (X, Y, B /∈ N ∪ T ) of TVDH system DG is a ”rotation version” of
word w. Say also that going from a rotation version of the word to another one is
rotating the word. TV DH system DG models the formal grammar G as follows.
System DG rotates the word Xw1uw2BY into Xw2Bw1uY . And so rotating is
used to put the occurrence of u to the end of the word. After that DG applies a

splicing rule
ε uY
Z vYi

. So we model the application of a rule u → υai of a formal

grammar G by a single scheme-rule. TV DH system DG rotates the word XwaiY
(ai ∈ (N ∪ T ∪ {B}) ”symbol by symbol”, i.e. word XaiwY is obtained after
performing a few steps of system DG. Rotating a word can be done as follows.
We start with word XwaiY in component R1. Component R2 receives the word
XwYi from component R1. Component R3 receives words XjajwYi (1 ≤ j ≤ n)
from component R2. After that point system DG works in a cycle in which in-
dexes i and j decrease. If j 6= i, then derived words with these indexes will be
ruled out. When i = j we obtain word X1aiwY1. Then, from that word we obtain
word XaiwY (so we rotated the word XwaiY ) and word aiw

′ (if aiw = aiw
′B).

So, if aiw
′ ∈ T ∗ then aiw

′ ∈ L(G) and aiw
′ ∈ L(DG).

(i) L(G) ⊆ L(DG).
We start with word XwY = Xw′aiY (w ∈ (N ∪ T ∪ {B})∗, 1 ≤ i ≤ n).

(Xw|uY, Z|vYi) `1.1 (XwvYi, ZuY ), i ∈ {1, . . . , n − 1}.
String ZuY cannot enter a splicing in R2 and therefore is removed. So we model
the application of rule u → vai.

(Xw′|aiuY, Z|Yi) `1.6 (Xw′Yi, ZaiuY ), 1 ≤ i ≤ n.
String ZaiuY cannot enter a splicing in R2 and therefore is removed. So we
model the application of rule u → ε.

(Xw′|aiY, Z|Yi) `1.2 (Xw′Yi, ZaiY ), 1 ≤ i ≤ n.
String ZaiY cannot enter a splicing in R2 and therefore is removed. So we start
to rotate the word w′ai.

(X|w′Yi, Xjaj |Z) `2.1 (Xjajw′Yi, XZ), 1 ≤ i, j ≤ n.
String XZ is an axiom.

(Xjajw
′|Yi, Z|Y ′

i−1) `3.1 (Xjajw
′Y ′

i−1, ZYi), 1 ≤ j ≤ n, 2 ≤ i ≤ n.
String ZYi is an axiom.

(Xj |ajw
′Y ′

i−1, X
′
j−1|Z) `1.3 (X ′

j−1ajw
′Y ′

i−1, XjZ), 2 ≤ i, j ≤ n.
String XjZ is an axiom.

(X ′
j−1ajw

′|Y ′
i−1, Z|Y ′′

i−1) `2.2 (X ′
j−1ajw

′Y ′′
i−1, ZY ′

i−1), 2 ≤ i, j ≤ n.
String ZY ′

i−1 is an axiom.

(X ′
j−1|ajw

′Y ′′
i−1, X

′′
j−1|Z) `3.2 (X ′′

j−1ajw
′Y ′′

i−1, X
′
j−1Z), 2 ≤ i, j ≤ n.

String X ′
j−1Z is an axiom.

(X ′′
j−1ajw

′|Y ′′
i−1, Z|Yi−1) `1.5 (X ′′

j−1ajw
′Yi−1, ZY ′′

i−1), 2 ≤ i, j ≤ n.
String ZY ′′

i−1 is an axiom.

(X ′′
j−1|ajw

′Yi−1, Xj−1|Z) `2.3 (Xj−1ajw′Yi−1, X ′′
j−1Z), 2 ≤ i, j ≤ n.

String X ′′
j−1Z is an axiom.



Time-Varying Distributed H Systems 59

And so on.

There are 3 cases:

1) X1ajw′Yk 2) Xkajw′Y1, 2 ≤ k ≤ n, and 3) X1aiw′Y1.

Case 1):

(X1ajw
′|Yk, Z|Y ′

k−1) `3.1 (X1ajw
′Y ′

k−1, ZYk), 2 ≤ k ≤ n.
String ZYk is an axiom.

(X1|ajw
′Y ′

k−1, X
′|Z) `1.4 (X ′ajw

′Y ′
k−1, X1Z), 2 ≤ k ≤ n.

String X1Z is an axiom.

(X ′ajw
′|Y ′

k−1, Z|Y ′′
k−1) `2.2 (X ′ajw

′Y ′′
k−1, ZY ′

k−1), 2 ≤ k ≤ n.
String ZY ′

k−1 is an axiom. String X ′ajw
′Y ′′

k−1 cannot enter a splicing in R3 and
therefore is removed.

(X ′|ajw
′Y ′

k−1, X|Z) `2.4 (Xajw
′Y ′

k−1, X
′Z), 2 ≤ k ≤ n.

String X ′Z is an axiom. String Xajw
′Y ′

k−1 cannot enter a splicing in R3 and
therefore is removed.

(X ′|ajw
′Y ′

k−1, |Z ′) `2.5 (ajw
′Y ′

k−1, X
′Z ′), 2 ≤ k ≤ n.

Strings ajw
′Y ′

k−1 and X ′Z ′ cannot enter a splicing in R3 and therefore are
removed.

So, this computation is ”mortal”, i.e. it completes without results.

Case 2):

(Xkajw
′|Y1, Z|Y ′) `3.3 (Xkajw

′Y ′, ZY1), 2 ≤ k ≤ n.
String ZY1 is an axiom.

(Xk|ajw
′Y ′, X ′

k−1|Z) `1.3 (X ′
k−1ajw

′Y ′, XkZ), 2 ≤ k ≤ n.
String XkZ is an axiom.
String X ′

k−1ajw
′Y ′ cannot enter a splicing in R2 and therefore is removed.

So, this computation also is ”mortal”.

Case 3):

(X1aiw
′|Y1, Z|Y ′) `3.3 (X1aiw

′Y ′, ZY1), 1 ≤ i ≤ n.
String ZY1 is an axiom.

(X1|aiw
′Y ′, X ′|Z) `1.4 (X ′aiw

′Y ′, X1Z), 1 ≤ i ≤ n.
String X1Z is an axiom.

(X ′|aiw
′Y ′, X|Z) `2.4 (Xaiw

′Y ′, X ′Z), 1 ≤ i ≤ n.
String X ′Z is an axiom.

(X ′|aiw
′Y ′, |Z ′) `2.5 (aiw

′Y ′, X ′Z ′), 1 ≤ i ≤ n.
String X ′Z ′ cannot enter a splicing in R3 and therefore is removed.

(Xaiw
′|Y ′, Z|Y ) `3.4 (Xaiw

′Y, ZY ′), 1 ≤ i ≤ n.
String ZY ′ is an axiom.

And now, Xaiw
′Y is the expected result. We rotated symbol ai from the

right side of the developed word to the left side one.



60 M. Margenstern and Y. Rogozhin

(Xaiw
′′|BY ′, Z ′′|) `3.5 (Xaiw

′′, Z ′′BY ′), 1 ≤ i ≤ n.
Strings Xaiw

′′ and Z ′′BY ′ cannot enter a splicing in R1 and therefore are re-
moved.

(aiw
′′|BY ′, Z ′′|) `3.5 (aiw

′′, Z ′′BY ′), 1 ≤ i ≤ n.
String Z ′′BY ′ cannot enter a splicing in R1 and therefore is removed.

And now, aiw
′′ may be the expected result (a pure terminal string). If aiw

′′ ∈
T ∗ and so aiw

′′ ∈ L(G), then aiw
′′ ∈ L(DG) also and this part of theorem 1 is

proved.

DG continues its computations.
(aiw

′|Y ′, Z|Y ) `3.4 (aiw
′Y, ZY ′), 1 ≤ i ≤ n.

String ZY ′ is an axiom.

Rule 1.1 may be applied:
(aiw

′′|uY, Z|vYk) `1.1 (aiw
′′vYk, ZuY ), 1 ≤ i ≤ n, k ∈ {1, . . . , n − 1}.

Strings aiw
′′vYk and ZuY cannot enter a splicing in R2 and therefore are re-

moved.

Rule 1.6 may be applied:
(aiw

′′|aluY, Z|Yl) `1.6 (aiw
′′Yl, ZaluY ), 1 ≤ i, l ≤ n.

Strings aiw
′′Yl and ZaluY cannot enter a splicing in R2 and therefore are re-

moved.
(aiw

′′|alY, Z|Yl) `1.2 (aiw
′′Yl, ZalY ), 1 ≤ i, l ≤ n.

Strings aiw
′′Yl and ZalY cannot enter a splicing in R2 and therefore are removed.

So, these computations are ”mortal” too and DG cannot produce any other
molecules than aiw

′′.

(ii) L(DG) ⊆ L(G).
Let us examine the behaviour of DG. First of all, we can see that DG correctly

simulates the use of any rule u → v ∈ P , because all ”superfluous” molecules
are ruled out. We note that the subscripts of X, Y can be removed only when
i = j during the simulation of rule u → v ∈ P . More generally, occurring non-
terminal letters can be removed to obtain the ”pure” terminal word only when
we simulates the rule u → v ∈ P . So, if w ∈ L(DG) then w ∈ L(G). ut

4 Modified Definition of TVDH Systems – Extended
TVDH Systems

We extend the definition of H system to components of TVDH system, so the
components Ri, 1 ≤ i ≤ n of TVDH system of degree n will work as correspond-
ing H systems.

Let us define operation σ̃h(L) as follows:

σ̃h(L) = σ̃h(L′ ∪ L′′) def= σ∗
h(L′), where

L′ = {w1 ∈ L|∃w2 ∈ L : ∃w, w′ ∈ V ∗ : ∃r ∈ R : (w1, w2) `r (w, w′) or
(w2, w1) `r (w, w′)}, L′′ = L \ L′, and h = (V, R).



Time-Varying Distributed H Systems 61

(We note that every language L ⊆ V ∗ for every H scheme h can be split
recursively into two subsets L′ and L′′).

So, σ̃h(L) works as H system (h, L′) = ((V, R), L′).
An extended time-varying distributed H system (of degree n, n ≥ 1),

(ETVDH system) is a construct:

E = (V, T, A, R1, R2, . . . , Rn),

where V is an alphabet, T ⊆ V is the terminal alphabet, A ⊆ V ∗ is the finite set of
axioms, and Ri are components, i.e. finite sets of splicing rules over V, 1 ≤ i ≤ n.

At each moment k = n · j + i, for j ≥ 0, 1 ≤ i ≤ n, only component Ri is
used for splicing the currently available strings.

L1 = A,
Lk+1 = σ̃hi

(Lk), for i ≡ k(mod n), k ≥ 1, 1 ≤ i ≤ n, hi = (V, Ri).
The language generated by E is:

L(E) = (∪k≥1Lk) ∩ T ∗.

Let us denote by EV DHn, n ≥ 1, the family of languages generated by extended
time-varying distributed H systems of degree at most n, and EV DH∗ the family
of all languages of this type.

Theorem 2. (see [8].) a) EV DH1 = REG, b) EV DH2 = EV DH∗ = RE.

Proof. Let be E = (V, T, A, R1). As there is a single component, we can denote
it simply R and, accordingly, σ̃h1 can also be denoted by σ̃ and σ∗

h1
by σ∗.

According to the definitions, L1 = A. We have that L2 = σ̃(A).
Let us now split L2 into two subsets: L′

2 will denote the words which enter the
rules of the component and L′′

2 , will denote those which do not enter the rules.
Accordingly, L3 = σ̃(L2) = σ∗(L′

2). By construction, we have that L′
2 ⊆ L2.

Split L3 into two subsets L′
3 and L′′

3 defined in the same way as for L2. We have
that L3 = σ̃(L2) = σ∗(L′

2) and, as L′
2 ⊆ L2, that L′

3 ⊆ L′
2.

Now, L4 = σ̃(L3) = σ∗(L′
3) ⊆ σ∗(σ∗(L′

2)). But, by the definition of σ∗, it is
plain that σ∗(σ∗(L)) = σ∗(L) for any language L. Accordingly, L4 ⊆ L3. And
so, due to the definition of L(E), L(E) = (L1 ∪ L2 ∪ L3) ∩ T ∗.

By [15], we know that extended H systems with a finite set of axioms and
a finite set of rules generate regular languages. Accordingly, L2 is a regular
language. For each rule r of R, let us define Lr as the set of words upon V ∗ which
do not enter r. As it is plain that the complement of Lr in V ∗ is recognizable
by a finite automaton, Lr is a regular language and so, as R is finite and as
L′′

2 = ∪
r∈R

(L2 ∩ Lr), L′′
2 is also a regular language. As L′

2 is the complement

of L′′
2 in L2 which is also a regular language, we obtain that L′

2 is a regular
language. By [11], extended H systems with a regular set of axioms and with a
finite number of rules generate regular languages. Accordingly, L3 is a regular
language, and so is L(E). This proves that L(E) ⊆ REG. Similar as [13], it is
easy to prove that REG ⊂ EV DH1, so the proof of theorem 2 a) is completed.

The part b) is true immediately after a small modification of the construction
of theorem 1b [8]. ut



62 M. Margenstern and Y. Rogozhin

Acknowledgement. The authors acknowledge the very helpful contribution of
INTAS project 97-1259 for enhancing their cooperation, giving the best condi-
tions for producing the present result. For the same reasons they also acknowl-
edge the help of the University of Metz (France).

References

1. Csuhaj-Varjù, E., Kari, L., Păun, G.: Test Tube distributed system based on splic-
ing. Computer and AI. 2–3 (1996) 211–232

2. Ferretti, C., Mauri, G., Zandron, C.: Nine test tubes generate any RE language.
TCS. 231, no.2 (2000) 171–180

3. Head, T.: Formal language theory and DNA: an analysis of the generative capacity
of recombinant behaviors. Bulletin of Mathematical Biology 49 (1987) 737–759

4. Head, T., Păun, Gh., Pixton, D.: Language theory and molecular genetics.
Generative mechanisms suggested by DNA recombination. Chapter 7 in vol.2
of G.Rozenberg, A.Salomaa, eds., Handbook of Formal Languages, 3 volumes,
Springer-Verlag, Heidelberg (1997)

5. Margenstern, M.: Frontier between decidability and undecidability: a survey. TCS.
231, no.2 (2000) 217–251

6. Margenstern, M., Rogozhin, Yu.: A universal time-varying distributed H-system
of degree 2. In Preliminary proceedings, Fourth International Meeting on DNA
Based Computers, June 15-19, 1998, University of Pennsylvania (1998) 83–84

7. Margenstern, M., Rogozhin, Yu.: A universal time-varying distributed H-system of
degree 2. Biosystems 52 (1999) 73–80

8. Margenstern, M., Rogozhin, Yu.: Generating all recursively enumerable languages
with a time-varying distributed H-system of degree 2. Publications du GIFM, no.
99-102, I.U.T., Metz (France), ISBN 2-9511539-5-3 (1999)

9. Păun, A.: On Time-Varying H Systems. Bulletin of EATCS. 67 (1999) 157–164
10. Păun, G.: Regular extended H systems are computationally universal. Journal of

Automata, Languages and Combinatorics 1, no.1 (1996) 27–36
11. Păun, G., Rozenberg, G., Salomaa, A.: Computing by splicing. TCS. 168, no.2

(1996) 321–336
12. Păun, G.: DNA computing: distributed splicing systems. In Structures in Logic

and Computer Science. A Selection of Essays in honor of A. Ehrenfeucht, LNCS.
1261 (1997) 353–370

13. Păun, G.: DNA Computing Based on Splicing: Universality Results. TCS. 231,
no.2 (2000) 275–296

14. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing
Paradigms. Springer, Heidelberg (1998)

15. Pixton, D.: Regularity of splicing languages. Descrete Applied Mathematics 69
(1996) 101–124

16. Priese, L., Rogozhin, Yu., Margenstern, M.: Finite H-Systems with 3 Test Tubes are
not Predictable. In Proceedings of Pacific Symposium on Biocomputing, Kapalua,
Maui, January 1998 (R.B.Altman, A.K.Dunker, L.Hunter, T.E.Klein, eds), World
Sci. Publ., Singapure (1998) 545–556

17. Rogozhin, Yu.: Small universal Turing machines. TCS. 168, no.2 (1996) 215–240
18. Rogozhin, Yu.: A Universal Turing Machine with 22 States and 2 Symbols. Roma-

nian Journal of Information Science and Technology 1, no.3 (1998) 259–265
19. Verlan, S.: On extended time-varying distributed H systems. Poster at DNA6 con-

ference, Leiden (2000)



String Tile Models for DNA Computing by
Self-Assembly

Erik Winfree1, Tony Eng2, and Grzegorz Rozenberg3,4

1 Depts. of Computer Science and CNS,
California Institute of Technology,

Pasadena CA 91125, USA,
winfree@caltech.edu,

http://gg.caltech.edu/∼winfree,
2 Laboratory for Computer Science,

Massachusetts Institute of Technology,
Cambridge, MA 02139, USA,
tleng@theory.lcs.mit.edu,

3 Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1, 2333 CA Leiden
The Netherlands

4 Department of Computer Science
University of Colorado at Boulder

Boulder, CO 80309, USA.
rozenber@wi.leidenuniv.nl

Abstract. This paper investigates computation by linear assemblies of
complex DNA tiles, which we call string tiles. By keeping track of the
strands as they weave back and forth through the assembly, we show that
surprisingly sophisticated calculations can be performed using linear self-
assembly. Examples range from generating an addition table to providing
O(1) solutions to CNF-SAT and DHPP. We classify the families of lan-
guages that can be generated by various types of DNA molecules, and
establish a correspondence to the existing classes ET0Lml and ET0Lfin.
Thus, linear self-assembly of string tiles can generate the output lan-
guages of finite-visit Turing Machines.

1 Introduction

Adleman’s original work on molecular computation [Adl94] made use of self-
assembly for an important step in the computation: the generation of DNA
representing paths through a graph of vertices. This is a useful preprocessing
step, reducing the set of all possible sequences of vertices to just a subset (the
valid paths) that can be exponentially smaller. However, linear self-assembly of
double-helical DNA appeared to be limited, prompting the suggestion to use the
self-assembly of two-dimensional [Win96] and branched [WYS98] DNA struc-
tures for DNA-based computation. These suggestions were predicated on the

A. Condon (Ed.): DNA 2000, LNCS 2054, pp. 63–88, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



64 E. Winfree, T. Eng, and G. Rozenberg

complex synthetic DNA structures invented by Seeman for DNA nanotechnol-
ogy [See82,See98]; there is now over a decade of experimental work with these
molecules, including the recent demonstration of two-dimensional (2D) crystals
and their modification [WLWS98,LYK+00,MSS99,LSS99].

Self-assembly and branched DNA structures may be used in combination
with other DNA computing techniques. Reif has proposed using step-wise self-
assembly to reduce errors [Rei99]; the circuit satisfaction problem has a par-
ticularly elegant implementation in his model. Jonoska has considered the self-
assembly of branched DNA into flexible graph-like structures, with applications
to NP-complete problems [JKS99]. An interesting observation is that pre-formed
branched DNA structures can provide advantages for subsequent processing by
restriction enzyme digestion [JKS98]. Even knottedness can be used for compu-
tation; DNA Borromean rings implement a logical AND gate [SWY+98]. We are a
long way from understanding the full power of branched DNA and self-assembly.

However, these proposals still use complex DNA structures and assemblies
that are likely to pose at least as many technical difficulties as 2D self-assembly.
It has been suggested that fixed-width or one-dimensional (1D) self-assembly
may be an attractive and robust experimental system, with faster self-assembly
and lower error rates than two-dimensional systems [LWR00]. In this article we
explore the computational power of 1D self-assembly of branched DNA struc-
tures.

2 DNA Self-Assembly and Formal Language Theory

In DNA-based computing, a test tube of DNA oligonucleotides (equivalently,
strands) is considered to represent a set of strings over an alphabet. A strand
of DNA can be interpreted directly as a string over D = {A, C, G, T} (a DNA
sequence) by reading its bases in the 5′ → 3′ order. If S is a DNA sequence, then
its Watson-Crick complement is written S′; e.g. AGCTGCG′ = CGCAGCT . We
will follow the convention that DNA strands may be taken to represent strings
over a larger alphabet Σ by using a codebook C : Σ → DN ; i.e., each symbol in
Σ is represented by an N -base subsequence. It will always be assumed that for
α 6= β, occurrences of C(α) and C(β) are guaranteed not to overlap in the DNA
strands under consideration. Thus, a tube of DNA strands can be considered
to represent a set of strings over the alphabet Σ. Because DNA strands can be
circular, a test tube may also contain circular strings over D and Σ, represented
using the prefix symbol ◦ as described later. Finally, note that the codebook
defines a many-to-one relationship of D∗ to Σ∗, because we use the convention
that DNA subsequences that are not part of any codeword C(α) are simply
ignored. For example, using a codebook where C(a) = ACT, C(b) = GAC, both
the strings ACTGACGAC and GTACTTTGGACGTGAC code for abb.

Formal languages, central to understanding computation on strings, provide a
natural formalism for DNA based computing. There is a close correspondence be-
tween generative grammars and the self-assembly and ligation of DNA molecules.
Both are processes that generate new strings from previous ones according to



String Tile Models 65

linear duplex = REG

dendrimers = CF

2D crystals = RE

linear duplex w/ hairpin = 2−LIN

= ET0L fin

mlET0L=permutation, parallel tiles

general, planar, hairpin tiles

abcde

Fig. 1. The hierarchy of self-assembled languages, including the new results in this pa-
per. Here REG is the family of regular languages, LIN is the family of linear languages
(and k-LIN is the k-metalinear languages, where the axioms may have k non-terminal
symbols), CF is the family of context-free languages, CS is the family of context-
sensitive languages, and RE is the family of recursively enumerable languages.

well-defined rules. As an example, we informally describe the self-assembly model
of Winfree et al. [WYS98]. A multi-strand DNA molecule is represented as a
graph, called a DNA complex, where each node (labelled from D) represents a nu-
cleotide, directed backbone edges represent covalent phospho-diester bonds, and
undirected basepair edges represent Watson-Crick base pairing. Self-assembly at
“temperature” T starts with (an unlimited supply of) a finite set of initial DNA
complexes. Two DNA complexes with complementary sticky ends (of length
≥ T ) can be joined to make a new complex. A DNA complex that cannot par-
ticipate in further assembly is called a maximal (or terminal) complex. The set
of strands remaining after ligation of all nicks in all maximal complexes is a
DNA sequence language over D, encoding (via the codebook C) a language over
Σ. For example, in the linear duplex assembly of Figure 1, the DNA sequences
after ligation are the two strands {a b c d e, e′ d′ c′ b′ a′}.

Throughout this text we are interested only in the maximal, not the inter-
mediate assemblies. That is, although we postulate an unlimited supply of the
initial DNA complexes, we assume all reactions go to completion, exhausting
the supply of their reactants. Our motivation is partly to avoid treatment of



66 E. Winfree, T. Eng, and G. Rozenberg

Y Y Y ZX

Y

Z

X

1

1

1

1

a’

b’

a

b

b

a

a’

b’

ut u
sr

t u
sr

t

u
sr

t

r s

Fig. 2. Three DPE molecules that assemble to construct a language outside of context-
free. Both molecular schematics and string tile diagrams are shown. Sticky-end se-
quences are indicated by a, b and their Watson-Crick complements a′ and b′; the match-
ing relationship is given by the binding label 1 on the string tiles. The coding sequences
in the DNA strands are indicated by the edge labels r, s, t, and u in the string tiles.

concentrations and kinetics and equilibria, as would be necessary to study inter-
mediates, and partly because the study of maximal assemblies allows for more
elegant mathematics. (More subtle models of self-assembly that attempt to treat
kinetics and finite resources more realistically have proven to be mathematically
challenging [Adl00].)

We are interested in computational structure-function relationships: what
classes of DNA complexes (i.e. structures) give rise to what classes of languages
(i.e. functions)? As is illustrated in Figure 1, the first natural classes of DNA self-
assembly to be studied reproduced much of the Chomsky hierarchy for formal
languages.

– Self-assembly of duplex DNA by single sticky-end adhesion generates regular
languages by forming linear DNA complexes [WYS98].

– Self-assembly of hairpin and duplex DNA by single sticky-end adhesion gen-
erates 2-metalinear languages by forming linear DNA complexes (a modest
generalization of [Eng99]).

– Self-assembly of hairpin, duplex, and 3-arm DNA by single sticky-end adhe-
sion generates context-free languages by forming dendrimer DNA complexes
[WYS98].



String Tile Models 67

input node output node

le
ft

 s
id

e 
po

rt

right side port

s g

edge
(or string)

edge label

left side
binding label

right side
binding label

nicked string

helix axis

helix domain

minor groove major groove

sticky end
sequence junction

antiparallel

sticky end sticky end
helix domainhelix domain

arm arm

 apple

a

Fig. 3. Terminology for DNA multi-crossover structures and string tile diagrams.
Arrowheads indicate the 3′ end of the DNA. Note that in the molecular schematic
(showing a DAO molecule), the major/minor goove also indicates the 3′ and 5′ ends:
the 3′ ends point away from the center of the narrow (minor) groove. The non-crossing
strands in an antiparallel junction are antiparallel; in a parallel junction, they would
be parallel. Hairpin strands begin and end on the same side of the tile or molecule.

– Self-assembly of DX units by double sticky-end adhesion, at a critical tem-
perature that allows discrimination between single and double matches, can
generate recursively enumerable languages by forming 2D DNA complexes
[Win96,WYS98].

In this paper, we show two new classes:

– Self-assembly of DNA multi-crossover units by multiple simultaneous sticky-
end adhesion generates ET0Lfin languages by forming linear multi-helix
DNA complexes.

– The above case, restricted to units where in each internal tile all coding
strands cross from one side to the other side, generates ET0Lml languages.

The context-sensitive languages have not yet arisen in DNA self-assembly.

3 Motivating Examples

We develop the basic ideas by example, before introducing formal notation in
Section 5.

3.1 A Non-context-free Language

We begin by considering linear assembly of double-crossover (DX) molecules
[FS93], allowing hairpins on the arms. There are five types of DX molecules,
classified according to whether the strands that don’t cross at the junction are
parallel (P) or anti-parallel (A) with each other, whether there are an even (E)
or odd (O) number of half-turns between junctions, and whether the narrow (N)
or wide (W) groove is in excess on the inside between the junctions: thus they
are called DAE, DAO, DPE, DPON, DPOW.



68 E. Winfree, T. Eng, and G. Rozenberg

If DPE units assemble into a linear array where each unit joins its neigh-
bors via both of two sticky ends, then the resulting language of DNA se-
quences can be beyond context-free. Specifically, Figure 2 shows how to achieve
L = {rnsntnun|n ≥ 1} /∈ LCF . The hairpins on the arms of X and Z allow the
strands to turn around and return again through the tiles. Long-range correla-
tions are possible due to the fact that the final DNA strand snakes through the
assembly several times. The maximal DNA complexes assembled in this reac-
tion are of the form XY ∗Z, but the DNA strands encode sequences of the form
rnsntnun. Thus a regular language of units yields a non-context-free language
of DNA sequences.

The logic of language generation by self-assembly can be hard to see when
complex multi-helical DNA structures are drawn; the situation is clarified by
using (linear) string tiles, as shown in Figures 2 and 3 and described informally
here (we give formal definitions in Section 5). The left and right sides are called
the ports. Each port may be labelled by a symbol or color, called the binding
label, to indicate how tiles may be joined to each other. The ports also have
several input and output nodes representing the 3′ and 5′ ends, respectively, of
strands that can be ligated to strands in adjacent tiles. The input and output
nodes within a tile are connected by edges (drawn as arrows) representing the
DNA strands of the tile. A missing edge (drawn as an arrow that connects to
or from nothing) indicates a nick in the DNA strand. Each edge is labelled by
a string over the final alphabet to indicate the coding sequence on that strand.
Tiles with matching binding labels may be joined (like dominoes); assemblies
which permit no further additions are called maximal assemblies. When joined,
the edges in maximal assemblies form either paths or cycles; the strings labelling
the edges may be concatenated to form linear or circular strings, respectively.
The collection of all such concatenated linear (circular) strings, for all maximal
assemblies made from a given set of tiles, is called the linear (circular) language
generated by the tile set.

3.2 Parallel Tiles That Generate an Addition Table

A more interesting example, building on [Rei99,LYK+00], is generating a table
of all addition input/output triples. ([LWR00] gives another implementation of
this example, based on a preliminary draft of this paper.) As shown in Figure 4,
the basic unit is still a DPE double crossover unit, each with a pair of sticky ends
on the left and on the right. The sequences for these sticky ends are such that
for any two units which bump into each other, either both sticky ends match
(and the units may be joined) or both sticky ends don’t match (and the units
may not be joined). Thus, a temperature that allows discrimination between a
partial match and a total match is not necessary.

How does this system work? The two possible sticky-end pairs represent the
two possible carry-bit states during bitwise addition. Starting from the right,
each new unit adds a new bit to x and a new bit to y (thus there are always
4 possibilities) and the appropriate new bit to z (as a function of the previous
carry and x and y), terminating with the sticky-end pair for the appropriate



String Tile Models 69

L RM M M

L

M

R

+

1
0

1

1

0

0

1

1
0

=

x
y

z

+

=

0

cc’

0

00

001 110

0 1

0

0

0

0

c

c

c’

c’

a’

b’

a

b

b

a

a’

b’

xyz

101

z = (x + y + c) mod 2

c’ = (x + y + c>1)

Fig. 4. Ten DPE molecules that assemble to construct a binary addition table. Here,
x, y, z, c, and c′ are binary variables; there is a one tile for every combination of x, y, z
values. Thus, there are only four sticky-end sequences, a0, a1, b0, b1, and their Watson-
Crick complements. Likewise, there are only two binding labels, 0 and 1. Matching
binding labels are indicated below the sides of joined tiles in the assembly.

carry bit (again as a function of the previous carry and x and y). With the
capping units, the final strand through the maximal assembly zigs first through
x, then zags through y, and finally (in reverse order) through z. The generated
language is thus

LADDREV = {“x + y = z” : |x| = |y| = |z| and #zR = #x + #y}

where zR gives the string z in reverse-order and #x gives the integer represented
by the binary string x. We use quotation marks to emphasize that the contained
symbols are just symbols; i.e., “+” is a symbol and not a mathematical operator
in this context.

There are two potential drawbacks to the scheme illustrated in Figure 4.
First, we note that [FS93] found that parallel variants (DPE, DPON, DPOW)
of short double crossover molecules are less stable than the antiparallel (DAE,
DAO) variants. Long arms in our DPE should stabilize the parallel structures,
but it is worth investigating whether the string tiles can be implemented using
only antiparallel structures. Second, the reversed output string may indicate a
limitation to the string tile approach. As we see in the next example, it does not.



70 E. Winfree, T. Eng, and G. Rozenberg

L

M

R

c’

c’

c’

c’b’
c’a’

c’
d’
e’

0

0

0

c’
d’
e’

0b’
0a’

=

+

x
y
z

c’ c

0

0

c

c

c

c

c

0

0

0

0

0a
b
c
d
e

xyz

a
b
c
d
e

Fig. 5. Ten penta-crossover molecules that assemble to construct a binary addition
table.

In fact, we can avoid both the reversed z string and the parallel DX molecules
by using larger multi-crossover units, thus generating exactly

LADD = {“x + y = z” : |x| = |y| = |z| and #z = #x + #y}.

Figure 5 shows string tiles built from antiparallel quintuple-axis DNA molecules.
Note that we are ignoring the black strands, which will not code for anything
according to the codebook, and thus are ignored in the final language. In this
system, each adhesion event now involves multiple sticky ends, but again no
sensitive discrimination is required – either all sticky ends match, or none do.
However, the trade-off is that more complicated DNA structures and longer
stretches of non-coding DNA are required.

3.3 Hairpin Tiles for CNF-SAT

We now show a use for tiles (other than cap tiles) whose coding strands involve
hairpins: they allow CNF-SAT problems to be solved in O(1) biosteps using
linear arrays of DNA multi-crossover units. The solution we present here, using
linear self-assembly, may (or may not) be faster and more robust than the two-
dimensional self-assembly of [Win96,LL00], which is also sufficient to solve this
problem in O(1) biosteps.

The main idea is as follows: A CNF-SAT problem of N clauses and M vari-
ables is solved using an initial set of 2M + 2 hairpin tiles of width N , which
assemble to form all 2M distinct tile assemblies of length M + 2. To isolate a
solution to the problem, one additional operation is required: after assembly and



String Tile Models 71

x1 x2 x3 x3x1 x2 x3 x1 x2 x3+ + )( +( ) ( + ) ( + + )
c1 c2 c3 c4

c2
c3

c1

c4
x1 x2 x3x1 x2 x3

x2 x2

Every
Clause
Satisfied

x2

x2

Unsatisfied
Clause
Present

x1

x1

x3

x3

Clause TableFormula

0
0
0

1
1

1
0
0

0

0
1

1

1
0
0
0 0

0
1
1

1

1
0
0

i i+11 M+1i+1i
x2

x2

x2

x2

x1

x1

x1

x3

x3

x2

x2

x3

x3

Fig. 6. Solving an N -clause M -variable CNF-SAT problem by linear assembly of
2M + 2 width-N strings tiles. Shown are the cap tiles and the tiles for xi and for xi,
i = 2. A circular strand indicates the solution to the problem. Maximal assemblies are
all of length M + 2.

ligation of the DNA, we select for circular strands (for example, by 2D gel elec-
trophoresis or by exonuclease digestion). The formula is satisfiable iff a circular
strand is present, as it gives a solution to the CNF-SAT problem.

More specifically, each clause Ci is a disjunction of literals chosen from
{x1, . . . , xM , x1, . . . , xM}. The entire CNF formula, then, can be represented
as a clause table C where each row signifies a clause, and each column signifies a
literal. Each tile will represent a column of entries in C. Thus there are two tiles
for each variable j, “True” (xj) and “False” (xj). “True” has a hairpin in each
row i such that the literal xj appears in clause i, and “False” has a hairpin in
each row i such that the literal xj appears in clause i. In any maximal assembly
made from the tiles shown in Figure 6, the ith row (helix axis) has a hairpin in
the jth column (tile) iff the assignment of “True” or “False” to variable xj has
satisfied clause i. Therefore, the strand starting in the left cap tile is circular iff
every clause is satisfied. The actual satisfying assignment is deduced from the



72 E. Winfree, T. Eng, and G. Rozenberg

1

1

3 4

5

2

Directed graph G Feedforward graph G’

3 2

3

2

1

4 4

51

2

2

3

3

4

4

5

N

Every
Vertex
Visited

p p+1

p p+1

1 2

1 2 32

3 4 4 5

3 4 4 5

32

Present

Unvisited
Vertex

1 N

i j

i j

31

1 2 2 4

4 2 2 5

4 2 2 5

43

for each edge

S

55

S

55

S

55

11

43

42

42

43

23

11

pi
i = 2 i+1 = 3

22

Fig. 7. O(N2) width-N strings tiles to solve an N -vertex Directed Hamiltonian Path
Problem. Maximal assemblies are all of length N + 1.

intervening sequence. (By construction, no other strands in the assembly can be
circular.)

3.4 Permutation Tiles for DHPP

As another example of solving an NP-complete problem in O(1) biosteps using
linear string tiles, we solve the Directed Hamiltonian Path Problem (DHPP)
using permutation tiles – that is, tiles without hairpins, but where the strands
may be re-routed as they cross the tile (that is, their order is permuted).

First, as a polynomial time preprocessing step, we convert the directed N -
vertex graph G into a feed-forward version G′ with up to N2 vertices. The vertex
at layer position p of G′ corresponding to vertex i in G is labelled ip. As shown in
Figure 7, we have a permutation tile for each edge ip → jp+1 in the new graph;
this tile has a single pair of non-parallel arrows from left input i (respectively
i + 1) to right output i + 1 (respectively i). Binding labels are such that each
maximal assembly of tiles corresponds to a path from 11 to NN in G′. Thus,



String Tile Models 73

starting at S in a tile assembly representing a particular length-N path through
G, the strand can advance from row i to row i + 1 only if vertex i is visited at
some point. If an unvisited vertex is present, there is a row the strand cannot
advance beyond, and consequently it must terminate at the 3′ nick. (Note that
the other strands may form a circle.) If there is no unvisited vertex, in which
case the assembly represents a Hamiltonian path, the strand containing S is
circular. Again, we isolate circular strands, and from those strands we further
must extract strands containing S.

Note that DHPP could also be solved with hairpin tiles as was CNF-SAT,
and conversely CNF-SAT could be solved with permutation tiles; this is left as
an exercise to the reader.

4 Constructibility of String Tiles

The CNF-SAT and DHPP examples made use of string tiles for which no explicit
DNA structures were given. Can we construct DNA molecules for the string tiles
in question? We approach this first by informally defining several classes of (sim-
pler and then more complex) string tiles, and then demonstrating a procedure
to build complex string tiles from simpler ones.

4.1 Classes of String Tiles

As illustrated in Figure 8, we classify linear string tiles into parallel tiles, in
which the ith input node on one side is connected to the ith output node on
the other side; permutation tiles, in which nodes must be connected to nodes
on the opposite side only, but in any order; hairpin tiles, which are like parallel
tiles with the additional possibility that an input node may be connected to
an adjacent output node on the same side; planar tiles in which the strands do
not cross, as drawn on the tiles; and general tiles, in which any connections are
allowed. These classes are subdivided into left and right cap tiles, which have
one unlabelled side, and into tiles with a given number of nicks (i.e., internal 3′

and 5′ ends, measured in pairs).

4.2 Criteria for Constructibility; Prototiles

We might ask at this point, can general tiles of significant complexity actually
be made out of DNA? To be a useful implementation of a string tile, a proposed
DNA complex must

– be geometrically compatible with DNA molecular structure,
– have strand routing identical to that in the string tile,
– be “rigid” as a molecule, so that each helical domain remains parallel to the

other helical domains,
– self-assemble reliably from the individual strands, when mixed according to

some protocol.



74 E. Winfree, T. Eng, and G. Rozenberg

GEN 1
lc GEN 0

rc

1
lcPLA 0

rcPLA

lcHAIR 2 0
rcHAIR

lcPAR 4

PERM

PAR

HAIR

PLA

GEN

lc
2 0

rcPERM PERM PERM PERM4 4

PAR 4 PAR PAR 40
rci i

i i

2HAIR 0HAIR

0PLA2PLA

GEN 2 GEN 0

i i

ii

i i

PERM

GEN

PLA

HAIR

PAR

Fig. 8. The five tile classes: parallel tiles (PAR), permutation tiles (PERM), hairpin
tiles (HAIR), planar tiles (PLA), and general tiles (GEN). The left (lc) and right (rc)
cap tiles of each class are shown, and the number of nicks is indicated in the superscript.
(left) Example tiles. (right) Tile class inclusion diagram.

For example, consider the two sets of tiles proposed for generating the ad-
dition table. In both sets, each double helix domain is connected to each neigh-
boring domain by at least two junctions, ensuring that the axes will be parallel
in the molecule and that the molecule will be rigid. The first set (Figure 4)
was implemented with DPE molecules, which have been characterized in the
laboratory [FS93], so they are known to self-assemble from the four component
strands (although with questionable reliability). The second set (Figure 5) was
implemented with hypothetical quintuple-axis molecules, which have not been
experimentally demonstrated yet, although they are likely to be feasible (N. See-
man, private communication). In fact, it is unlikely that the internal tiles would
spontaneously self-assembly from their 10 component strands, unless the long
black strand were broken into several shorter strands; but this is a question to
be answered by experiment. Direct assembly of tiles from component strands
poses an even greater difficulty for larger string tiles.

Therefore, we pursue an approach where larger string tiles are assembled
from a small set of prototiles, which consist of (or are very similar to) molecules
that have already been characterized experimentally. In fact, we give two possi-
ble implementations for each prototile, one using parallel junctions (essentially
DPE molecules [FS93]) and one using anti-parallel junctions (essentially triple-



String Tile Models 75

E
prototile parallel antiparallel

S+

S−

H+

H−

P

Fig. 9. Prototile sets (using only parallel junctions or only antiparallel junctions) from
which all general linear string tiles can be built.

crossover molecules [LYK+00,LWR00]). Thus, the constructions below show that
either parallel or anti-parallel junctions alone are sufficient for implementing all
general tiles. The six prototiles are shown in Figure 9; note that they are all
rigid.

4.3 Constructions

We construct a general tile in three steps. First (Figure 10a), we observe that
every general tile is the composition of a permutation tile, a hairpin tile, and a
permutation tile.

Second (Figure 10b), we show that any permutation tile can be built from the
E, P, S+, S− prototiles. To see how to arrange the prototiles, we make a list of
the desired destination for the left input nodes and sort this list using the Even-
Odd Transposition Sort, which is guaranteed to finish within N rounds [Knu73].
Wherever we performed a swap, we place an S+ prototile; where we didn’t swap,
we place a P prototile; and we use the E prototile for untested positions. This
correctly routes the rightward arrows, without affecting the leftward arrows. A
similar procedure can be done to route the leftward arrows without altering the
rightward arrows. Once the proper arrangement of the prototiles is determined,
the actual DNA molecules can be made with unique sticky ends for the prototile
in each position; each of these prototiles can be assembled from their component



76 E. Winfree, T. Eng, and G. Rozenberg

=

=

(c)

(b)

(a)

5
5

5
5

5

1
1 1 1 1

3 3
3 3

3
4 4

4 4
4

2 2
2

2
2

Fig. 10. (a) A general string tile with k hairpins can be created from two permutation
tiles and a hairpin tile with k hairpins. (b) A permutation tile can be built from the
E, P, S+, S− prototiles. Here we show the construction for the rightward arrows; a
similar construction routes the leftward arrows. (c) A hairpin tile with k hairpins can
be construction from the E, P, H+, H− prototiles.

strands in separate reactions, and then mixed and ligated to form the entire
string tile.

Third (Figure 10c), we note that hairpins tiles of the form required (hairpins
within a helix axis, but not between them) can be built from the E, P, H+, H−
prototiles. Three columns of prototiles are always sufficient.

5 Generative Power of String Tiles

We use a formal language theory approach to analyze the generative power of
string tile assembly. We first give a general definition of string tiles, and then
specialize to the fixed-width linear string tiles used in this paper.

5.1 Preliminaries

λ represents the empty string. From a given alphabet Φ we construct a distinct
barred alphabet Φ̄ = {σ̄ : σ ∈ Φ}. Thus, Φ ∩ Φ̄ = ∅ and, treating¯as an operator
that is its own inverse, ¯̄σ = σ. We will use Φ to represent a set of unique sticky
ends, while Φ̄ will represent their complements.

A circular string over Σ is a finite set c ⊂ Σ+ such that (ab ∈ c ⇒ ba ∈ c) and
(x, y ∈ c ⇒ ∃a, b : x = ab and y = ba). I.e. c consists of all circular permutations
of a given string. If x ∈ c, the shorthand ◦x denotes c.



String Tile Models 77

A directed graph with edges labeled over Σ is a pair g = (V, E) where E ⊆
V ×Σ∗ ×V . We use the notation Vg and Eg to refer to the vertices V and edges
E of g, respectively. Two graphs g1 and g2 are disjoint if Vg1 ∩ Vg2 = ∅.

A maximal path π in graph g is a list π = v1v2 · · · vk+1 where for 1 ≤ i ≤ k,
(vi, si, vi+1) ∈ Eg, and in-deg(v1)=0, out-deg(vk+1)=0, and vi = vj ⇒ i = j. In
that case, word(π) = s1s2 · · · sk.

A cycle π in graph g is a list π = v1v2 · · · vk+1 where for 1 ≤ i ≤ k,
(vi, si, vi+1) ∈ Eg and v1 = vk+1, and vi = vj ⇒ i = j for 1 ≤ i, j ≤ k. In
that case, cword(π) = ◦s1s2 · · · sk.

Let g1 and g2 be disjoint graphs over Σ and let A1 = {a1,1, . . . , a1,n} ⊆
Vg1 , A2 = {a2,1, . . . , a2,m} ⊆ Vg2 , B1 = {b1,1, . . . , b1,m} ⊆ Vg1 , and B2 =
{b2,1, . . . , b2,n} ⊆ Vg2 be disjoint ordered subsets. Then the join of g1 and g2
using A1, A2, B1, and B2 is

g1 A1,B1+A2,B2g2 = (Vg1∪Vg2 , Eg1∪Eg2∪
n⋃

i=1

{(A1,i, λ, B2,i)}∪
m⋃

i=1

{(A2,i, λ, B1,i)}).

That is, we add unlabeled edges from nodes in A1 and A2 to the respective nodes
in B2 and B1.

5.2 String Tiles

A port (over the alphabet Φ) of graph g is a triple p = (σ, I, O) where

– σ ∈ Φ ∪ Φ̄ ∪ {λ} is called the binding label,
– I ⊆ V is an ordered set of input nodes with in-deg 0,
– O ⊆ V is an ordered set of output nodes with out-deg 0,
– I ∩ O = ∅,
– σ = λ iff I = O = ∅, in which case the port is said to be empty.

We use the notation σp, Ip, and Op to refer to the binding label σ, input nodes
I, and output nodes O of p, respectively. Two ports P1 and P2 are disjoint if
IP1 , OP1 , IP2 , and OP2 are mutually disjoint.

A (k-sided) string tile over Σ, Φ is a pair t = (P, G) where

– G is a directed graph over Σ s.t. all nodes have in-deg ≤ 1 and out-deg ≤ 1,
– P = {p1, p2, . . . , pk} is a set of mutually disjoint ports over Φ of G.

Here, Σ is the alphabet for string labels (and thus the alphabet for the language
generated by the tiles) while Φ is the alphabet for the binding labels (which are
relevant only for the self-assembly process). We use the notation Pt and Gt to
refer to the ports P and graph G of t, respectively. When t is understood, σn,
Ii
n and Oi

n refer to the binding label, the ith input node and ith output node of
the port indexed by n, respectively. Two string tiles are disjoint if their graphs
are disjoint. Note that the connected components of G are paths and cycles.

A string tile t is of width w if |Ip| = |Op| = w for all ports p ∈ Pt. A
string tile is uniform if it is of width w for some w. A string tile t is primitive



78 E. Winfree, T. Eng, and G. Rozenberg

=+

(b)

Primitive Composite(a) (c)

O1
L

OL
2

OL
3

OL
4

I1
L

IL
2

IL
3

LI4

I1
R

IR
2

IR
3

I4
R

OR
1

OR
2

OR
3

O4
R

O1
L

OL
2

OL
3

OL
4

I1
L

IL
2

IL
3

LI4

I1
R

IR
2

IR
3

I4
R

OR
1

OR
2

OR
3

O4
R

c
c
c
c
c
c
c
c1

2

3

4

5

6

7

8 c
c
c
c
c
c
c
c

9

10

11

12

13

14

15

16

= cj

c  =

c  =

c  =

i

k

l

Fig. 11. (a) Diagram of a linear string tile (width 4). Note the order of the input and
output nodes. The edge labels are not shown; nor are the binding labels. The half-edges
indicate nodes that aren’t involved in edges. (b) Illustration of the composition of tiles.
(c) Numbering used in definition of planar tiles.

if
⋃

p∈Pt
Ip ∪ Op = VGt

; i.e. every vertex is in a port. Note that in a primitive
string tile, all edges are of the form (Ii

n, s, Oj
m). If a tile is not primitive, it is

composite. See Figure 11a.
Let t1 and t2 be disjoint string tiles over Σ, Φ and let p1 and p2 be ports

of t1 and t2 respectively. Then we say that t1 and t2 are p1-p2-compatible if
σ̄p1 = σp2 6= λ, |Ip1 | = |Op2 |, and |Op1 | = |Ip2 |. For p1-p2-compatible tiles t1 and
t2, the p1-p2-composition is

t1 p1 +p2 t2 = (Pt1 ∪ Pt2 r {p1, p2}, Gt1 Op1 ,Ip1
+Op2 ,Ip2

Gt2).

Note that it is easily verified that t1 p1 +p2 t2 is indeed a string tile. If p1 and
p2 are understood, as they are for all linear string tiles (below), then they are
omitted as subscripts for notational convenience. See Figure 11b.

5.3 Classes of Tiles

A linear string tile is a 2-sided string tile such that one port (the left port, by
convention indexed by L) is labelled from Φ ∪ {λ} and the other port (the right
port, indexed by R) is labelled from Φ̄ ∪ {λ}.

If t is a linear string tile, then it is called a complete tile if σL = λ = σR; it is
called a left cap tile if σL = λ 6= σR; it is called a right cap tile if σL 6= λ = σR;
and it is called an internal tile if σL 6= λ 6= σR. The intuition here is that ports
with binding label λ cannot be extended.

A linear string tile with n input nodes of degree 0 and m output nodes of
degree 0 is said to be n, m-nicked; if n = m, the tile is said to have n nicks. Note
that a width w string tile always has n = m.



String Tile Models 79

Let SET be a set of uniform linear string tiles, then SETn is the subset of
tiles with n or fewer nicks; SETlc is the subset of left cap tiles; SETrc is the
subset of right cap tiles; SETi is the subset of internal tiles. This notation is
illustrated in Figure 8.

Let the general tiles, GEN , be the set of all uniform primitive linear string
tiles. The parallel tiles, PAR, the permutation tiles, PERM , the hairpin tiles,
HAIR, and the planar tiles, PLA, are subsets of GEN , defined as follows (and
see Figures 8 and 11c). Let t ∈ GEN be of width w. Then

– t ∈ PAR iff (Ii
n, s, Oj

m) ∈ EGt
⇒ i = j and (n, m) ∈ {(L, R), (R, L)},

– t ∈ PERM iff (Ii
n, s, Oj

m) ∈ EGt
⇒ (n, m) ∈ {(L, R), (R, L)},

– t ∈ HAIR iff (Ii
n, s, Oj

m) ∈ EGt
⇒ either i = j and (n, m) ∈ {(L, R), (R, L)}

or i − j ∈ {±1} and (n, m) ∈ {(L, L), (R, R)},
– t ∈ PLA iff for i < k, (ci, s, cj), (ck, s′, cl) ∈ EGt

⇒ either i < k, l < j or
i, j < k, l or l < i, j < k, where (c1, c2, . . . , c4W ) is the counterclockwise list
of port nodes (I1

L, O1
L, I2

L, O2
L, . . . , I2

R, O2
R, I1

R, O1
R).

5.4 Assemblies and Languages

Let T be a finite set of width w linear string tiles. The string over T , α =
t1t2t3 · · · tn, with n ≥ 1 and ti ∈ T for all 1 ≤ i ≤ n, is an assembly over T if
either n = 1 or ti and ti+1 are compatible for all 1 ≤ i < n. Furthermore, α is
a maximal assembly over T if α is not a proper substring of any other assembly
over T . A(T ) is the set of all maximal assemblies over T . Note that A(T ) is
always a regular language.

Each assembly α induces a single tile tα = t′1 + t′2 + t′3 + · · · + t′n, where t′i
is a unique isomorphic copy of ti (required for distinctness). Note that for n > 1,
this tile is always not a primitive tile!

A tile t (and thus an assembly α) induces a set of linear strings

L(t) = {word(π) : π is a maximal path in Gt}
and a set of circular strings (only possible if the tile is composite)

C(t) = {cword(π) : π is a cycle in Gt}.

Then, for T a finite set of linear string tiles, the linear and circular languages
generated by T are, respectively,

L(T ) =
⋃

α∈A(T )

L(tα)

and
C(T ) =

⋃

α∈A(T )

C(tα).

Thus, we arrive at the family of languages generated by a (possibly infinite)
set of linear string tiles, SET :

LST (SET ) = {L(T ) : T ⊂ SET is finite }



80 E. Winfree, T. Eng, and G. Rozenberg

1B 2B 3B 4B< >,,,

A1 A2 A3 A4< , , , >

A
1

A
2

A
3

A
4

<
,

,
,

> A
1

A
2

A
3

A
4

<
,

,
,

>

1
B

2
B

3
B

4
B

<
>

,
,

,

1
B

2
B

3
B

4
B

<
>

,
,

,

, , , ><

< >, ,, 4B3B2B1B

A4A3A2A1

Production

ProductionAxiom

1 2 4

4321

1
2

3

4

5

1
1

2

3

4
4

3

2

1

2

3

4

x x x x x1 2 3 4 5 y y y y

y

y

y

y

x x x xy y y y1 2 3 4

x x

x

x
x x

x

x

x

3

y

y

y

y

Fig. 12. The correspondence between a scattered grammar and parallel string tiles
with HAIR1

lc and HAIR0
rc.

and
CST (SET ) = {C(T ) : T ⊂ SET is finite }.

ST stands for “String Tile”. For sets of tiles SET1, SET2, and SET3, in the
following we refer to the family of languages LST (SET1lc ∪ SET2i ∪ SET3rc)
as LST (SET1, SET2, SET3), for notational convenience.

5.5 Scattered Linear Grammars for Parallel String Tiles

We will show that the family of languages generated by parallel tiles is a subclass
of the languages generated by scattered context grammars. A scattered context
grammar (see [RS97], page 128) is a quadruple G = (ΣN , ΣT , P, S). ΣN are the
non-terminal symbols and ΣT are the terminal symbols. S is a finite set of axiom
strings over Σ = ΣN ∪ΣT and P is a finite set of vector productions of the form

〈A1, A2, . . . , An〉 → 〈x1, x2, . . . , xn〉

where Ai ∈ ΣN and xi ∈ Σ∗ and n > 0. A single derivation step, using the
above production, transforms the string

η1A1η2A2η3 · · · ηnAnηn+1 → η1x1η2x2η3 · · · ηnxnηn+1

where ηi ∈ Σ∗. That is, we are performing synchronized application of context-
free productions. The language generated by G is

L(G) = {x : s →∗ x and s ∈ S}

where →∗ is the symmetric, transitive closure of →.



String Tile Models 81

We define a scattered n-metalinear grammar to be a scattered context gram-
mar restricted to axiom strings of the form

x1A1x2A2x3 · · ·xnAnxn+1

and to productions of the form

〈A1, A2, . . . , An〉 → 〈x1B1y1, x2B2y2, . . . , xnBnyn〉

and
〈B1, B2, . . . , Bn〉 → 〈y1, y2, . . . , yn〉

where Ai, Bi ∈ ΣN and xi, yi ∈ Σ∗
T . That is, we are requiring synchronized

application of linear productions to a string with n non-terminals. LSM is the
family of languages generated by a scattered n-metalinear grammars, for some
n.

Figure 12 shows a one-to-one correspondence of axioms to left cap tiles,
productions to parallel tiles and right cap tiles, such that the language generated
by the grammar is identical to the (linear) language generated by the tiles. In
this way, it is straightforward to prove that

Theorem 1. LSM = LST (HAIR1, PAR0, HAIR0).

5.6 Parallel Normal Form for Permutation Tiles

We will sketch the main ideas needed to prove that the languages generated by
permutation tiles are the same as those generated by parallel tiles (although
fewer permutation tiles may be required).

We use a two-step process for converting a finite set of permutation tiles (with
general caps) into a finite set of parallel tiles (with hairpin caps) that generate
the same language (Figure 13). Let T0 ⊂ GENlc ∪ PERMi ∪ GENrc; we will
define T1 ⊂ GEN1

lc ∪ PERM0
i ∪ GEN0

rc and T2 ⊂ HAIR1
lc ∪ PAR0

i ∪ HAIR0
rc,

as sketched in Figure 13, by creating new maximal assemblies from the original
ones, and collecting the new tiles to form T1 and T2. Such an approach can
easily guarantee that every string in the original language is still in the language
generated by the new tiles; it must also be shown that no additional strings are
generated.

Suppose without loss of generality that the tiles in T0 are all width w, and
that all maximal assemblies induce complete tiles (i.e., they have cap tiles on
each end).

Step 1, removing nicks: For every assembly α ∈ A(T0), create a new assembly
of width-(w + 1) tiles for each maximal path in tα. All the edges in the original
tiles are present in the new tiles, but we keep only the edge labels on the chosen
maximal path (which we imagine colored black); edge labels on the remaining
edges (say, yellow) are replaced by λ. Additionally, we add λ-labelled edges from
the left cap’s bottom port to the start of the maximal path (red), and from the
end of the maximal path back to the left caps’ bottom port (cyan). All remaining



82 E. Winfree, T. Eng, and G. Rozenberg

s

.......

.......

....... .......

ss

s

p
g

s

y
j

byyyyyyy y

yyyyyyyb yr

r c

c

byyyybyyr

b byyyy yyr

Fig. 13. The correspondence between permutation tiles and parallel tiles. At the top is
an original assembly in A(T0); in the middle are the corresponding assemblies in A(T1),
one assembly per maximal path in the original assembly; and at the bottom are the
assemblies in A(T2), where the chosen path has been moved to the upper rows. σ is the
binding label joining the two central tiles in the original assembly. < σ, yyyyyyybry >
is the binding label in step 1 augmented by the color pattern of the ports. γ is the
permutation applied to the right port of the tile on the left, and and π is applied to
the left port of the tile on the right.

nicks are closed with λ-labelled edges (magenta). Finally, the binding labels are
augmented by the color pattern of the ports. The union of all such tiles created
for all maximal paths for all assemblies in A(T0) is the set T1. Note that T1 must
be a finite set, because there are a finite number of possible width-(w + 1) tiles
with the allowed edge and binding labels.

To see that LST (T0) ⊆ LST (T1), note that for every word in LST (T0) there
is an assembly in A(T0) that contains that word on a maximal path, and thus
there is an assembly in A(T1) that contains the same word on a maximal path.

To see that LST (T1) ⊆ LST (T0), note that every assembly in A(T1) induces
a complete tile with a unique maximal path (and perhaps many circles). The
augmented binding labels ensure that this path is colored red-black-cyan, and
thus that it corresponds to a maximal path in the corresponding assembly in
A(T0) obtained by replacing each tile by one that had been used to create it.

Step 2, removing routing: For every assembly α ∈ A(T1), create a new as-
sembly of width-(w + 1) tiles by permuting the input and output nodes on each
original tile so that in the new assembly, all internal tiles are parallel tiles and
the maximal path is layered at the top. Augment each port’s binding label to
include the permutations used for its input and output node lists. Finally, since



String Tile Models 83

=

Fig. 14. Planar tiles can be built from hairpin tiles.

the yellow edges are all λ-labelled and involved in cycles, we replace the yellow
edges in the cap tiles so as to obtain hairpin cap tiles. Again, the union of all
such tiles created for all assemblies in A(T1) is the set T2. Again, T2 must be a
finite set, because there are a finite number of possible tiles. The argument that
LST (T1) = LST (T2) is similar to the one given above.

Thus, we have sketched the proof for:

Theorem 2. LST (HAIR1, PAR0, HAIR0) = LST (GEN, PERM, GEN).

5.7 Hairpin Normal Form for General Tiles

A similar normal form, using hairpin tiles, can be found for general tiles. The
argument has three steps. First, hairpin tiles are a normal form for planar tiles.
Second, planar tiles are shown sufficient to generate the output languages pro-
duced by Hennie Machines. Third, a Hennie Machine can be found that outputs
the language generated by any given set of linear string tiles.

Figure 14 illustrates the first step, which is given without proof:

Theorem 3. LST (HAIR1, HAIR0, HAIR0) = LST (HAIR1, PLA0, HAIR0).

For the second step, we will use Turing Machines (TM) equipped with a 2-
way read/write input tape and a 1-way write-only output tape. Let Q be the
(finite) set of head states, ΣI be the (finite) set of input tape symbols, and ΣO

be the (finite) set of output tape symbols. Then the state transition table for
a TM consists of entries of the form qσ → q′σ′Ds where q, q′ ∈ Q, σ, σ′ ∈ ΣI ,
D ∈ {L, R, HA, HR}, and s ∈ Σ∗

O; every pair in Q × ΣI appears exactly once
on the left-hand-side in the state transition table. The action HA is to halt and
accept; the action HR is to halt and reject; L and R indicate moving left and
right, respectively. A TM has the k-visit property, and hence is a finite-visit TM,
if for no input does the machine enter any tape cell more than k times.

Related models include Hennie Machines (HM), which are finite-visit TMs
whose use of tape space is bounded by a linear function of the input string length
(i.e. they are linear bounded automata); and two-way generalized sequential ma-
chines (2gsm), which are Hennie Machines with a read-only input tape that is
never accessed beyond the ends of the input string.



84 E. Winfree, T. Eng, and G. Rozenberg

q
1 0s q’

1
s1

q s q’s
2 1 2 2

q s q’s23 3 3

q s q’s34 4 4

q’
1

q
2

q’
2

q
3 q’

4

q
4

q’
3

q
1

s4

s3
2s

s1

0s

HH

S S
Ls1

Ls2

s3R

s4R

s2

s3

s4

s1

Fig. 15. Planar tiles that simulate a finite-visit Turing Machine. (top) The general
form of tiles, showing start edges (yellow), action edges (red), and halt edges (cyan).
Although formally not part of the tile, we label the cell with tape symbols σi along the
center, indicating what must be on the tape during each visit of the Turing Machine
head. Each action edge corresponds to an entry in the TM state transition table, as
shown on the right. (bottom) An assembly containing the history of a Turing Machine
computation.

If a TM m computing on input x enters the accepting halt state with y on
the output tape, then we say that y = m(x). The output language of a TM m is

L(m) = {y : y = m(x) for some x}.

The family of all output languages of finite-visit TMs is

LTMfin
= {L(m) : m is a finite-visit TM }.

Likewise,
LHM = {L(m) : m is a HM }

and
L2gsmfin

= {L(g) : g is a finite-visit 2gsm }.

By padding input strings with extra blank symbols, it is easy to see that
LTMfin

= LHM . A corollary of our argument will be that, additionally, LTMfin
=

L2gsmfin
.

Given a HM m, we must define a finite set of tiles T ⊂ HAIR1
lc ∪ PLA0

i ∪
HAIR0

rc that generate the same language; i.e. L(m) = LST (T ). For each x ∈ Σ∗
I ,

we draw the execution of m computing on x as shown in Figure 15, including
a (imagine it yellow) path from the leftmost tile to the beginning of the input



String Tile Models 85

where the head starts, and a path (cyan) from where the head halts back to the
bottom of the leftmost tile, filling up all space in between. Each tile represents
a single tape cell, and contains information about every visit to that cell by the
Turing Machine head. The binding labels give the state of the Turing Machine
head for each entry to and exit from the cell, thus ensuring that any maximal
assembly represents a valid execution of the Turing Machine. The union of all
tiles so created is T . Using a similar argument to that given for parallel normal
form, we see that LST (T ) = L(m).

Theorem 4. LHM ⊆ LST (HAIR1, PLA0, HAIR0).

For the third step of the argument, we need to find a Hennie Machine that
outputs the same language as any given set of general tiles. Let T ⊂ GEN be
a finite set (without loss of generality, assume that all maximal assemblies of T
have cap tiles on both ends) of width-w linear string tiles over Σ, Φ. Our HM
will have input alphabet ΣI = T̂ = T × {Li : 0 ≤ i ≤ w} × {Ri : 0 ≤ i ≤ w} and
the output alphabet ΣO = Σ. Li and Ri are used only to select which path to
read in assemblies containing multiple nicks. The HM proceeds in two phases:
first it checks that the input represents a valid maximal assembly, then it reads
the word off one of the maximal paths. The (finite) information about the tile
types, edges, and labels is contained in the HM’s finite state logic. The HM
first checks that the first input symbol represents a left cap tile; then it scans
right (producing no output) so long as each successive tile is compatible with
the preceding one; either it arrives finally at a right cap tiles, or else it halts in
the rejecting state, thus producing no output. In the former case, the HM then
scans back to the left until it finds the first symbol (t, Li, Rj) where Oi

L or Oj
R is

nicked. (If it finds no such tile, it halts in the reject state.) The HM then simply
follows the chosen edges from its beginning until its end, producing as output
the edge labels, then halting in the accept state. Note that because symbols can
contain L0 and R0 but ports are numbered starting from 1, the HM can copy
any maximal path from any assembly. Also note that this HM uses the input
tape for reads only, and hence is a finite-visit 2gsm. Thus, we have:

Theorem 5. LST (GEN, GEN, GEN) ⊆ L2gsmfin
.

Altogether,

Theorem 6. LST (HAIR1, HAIR0, HAIR0)
= LST (GEN, GEN, GEN)
= LHM = L2gsmfin

.

6 Conclusions and Open Questions

We can now fit the languages generated by linear string tiles into known language
classes. ET0L systems [Roz73,RV78,RV80] are the most convenient well-studied
model. Diagrams very similar to string tiles came up in the study of crossing se-
quences [Hen65] and transductions by finite-visit machines [EH98,EH99]. Of par-
ticular interest are the metalinear ET0L systems, which generate the languages



86 E. Winfree, T. Eng, and G. Rozenberg

in ET0Lml, and the ET0L systems of finite index, which generate the language
in ET0Lfin. It is straightforward to show that scattered metalinear grammars
are a normal form for metalinear ET0L systems, and thus LSM = ET0Lml. In
[ERS80] it was proved that L2gsmfin

= ET0Lfin. Furthermore, it was shown
in [RV80] that the language {anbn : n ≥ 1}∗ is in ET0Lfin r ET0Lml. Indeed,
there is a simple set of width-2 planar tiles that generate this language, and we
can conclude that no set of parallel tiles can do so. Thus Figure 1 is justified.

We have given a full characterization only of the language classes generated
by finite sets of tiles. However, complexity issues remain to be investigated –
how many tiles are necessary to generate a specific language? The parallel nor-
mal form theorem potentially uses exponentially (in w) more parallel tiles than
permutation tiles. This question has obvious relevance to using string tiles to
solve NP-complete problems, such as CNF-SAT or DHPP.

Our definition of string tiles allows edges to be labeled by the empty string,
corresponding to tiles with DNA containing no coding sequence. Thus, the result-
ing ligated DNA strands may have very long regions coding for no information.
How do our language classes change if we insist on only λ-free string tiles?

Are the circular languages significantly different from the linear languages?
Unlike linear DNA strands, circular DNA strands can be knotted with themselves
and with other circular strands (although this is not part of the current formal
model); can knottedness increase the computational power? Careful routing of
strands using string tiles augments the computational power of linear DNA as-
sembly; for 2D or 3D assembly, although string tiles cannot increase the language
class beyond RE, can string tiles be used for more efficient computation?

Do the constructions and results presented in this paper point to better
practical implementations for DNA-based computing? It is hard to say at this
point, although the following calculation is illustrative. Consider a 40 variable
CNF-SAT problem, with 160 clauses. In our construction, 80 string tiles must
be prepared, each assembled from 240 prototiles (this number could be reduced
substantially with an improved construction). These tiles would be 240×75 nm,
with 160 sticky ends on each side. At a prototile concentration of 20µM , one
ml of solution would hold 12 × 1015 prototiles, thus 4 × 1013 tiles and 1 × 1012

maximal assemblies – just sufficient for 1X coverage of variable assignments. If
self-assembly of these monsters were reliable (40 sticky-end sets would have to
be sufficiently distinct) and roughly as fast as oligonucleotide hybridization, the
maximal assemblies would form in a few minutes. The assembly containing the
satisfying strand would still have to survive ligation at each of up to 160 × 40
nicks, at (on a good day) 90% yield for each nick. That doesn’t leave much. On
the one hand, we’re excited to see a new approach for DNA based computing
by self-assembly, which may have payoff for simple examples like generating an
addition table; on the other hand, significant practical applications at this point
seem rather far off.

Acknowledgements. The authors are indebted to Joost Engelfriet and Hen-
drik Jan Hoogeboom for their guidance through the maze of results on the output



String Tile Models 87

languages of various sorts of transducers, and to John Reif and Thom LaBean
for their critical reading, discussion, and encouragement.

References

[Adl94] Leonard M. Adleman. Molecular computation of solutions to combinato-
rial problems. Science, 266:1021–1024, November 11, 1994.

[Adl00] Leonard M. Adleman. Toward a mathematical theory of self-assembly.
USC Technical Report, 2000.

[EH98] Joost Engelfriet and Hendrik Jan Hoogeboom. MSO definable string
transductions and two-way finite state transducers. LIACS Technical Re-
port 98-13, 1998.

[EH99] Joost Engelfriet and Hendrik Jan Hoogeboom. Two-way finite state trans-
ducers and monadic second-order logic. In Lecture Notes in Computer
Science, volume 1644, pages 311–320. Springer Verlag, 1999.

[Eng99] Tony Eng. Linear DNA self-assembly with hairpins generates the equiva-
lent of linear context-free grammars. In Rubin and Wood [RW99].

[ERS80] J. Engelfriet, G. Rozenberg, and G Slutzki. Tree transducers, L systems,
and two-way machines. J. Comp. and Syst. Sc., 20:150–202, 1980.

[FS93] Tsu-Ju Fu and Nadrian C. Seeman. DNA double-crossover molecules.
Biochemistry, 32:3211–3220, 1993.

[Hen65] H. C. Hennie. One-tape, off-line Turing machine computations. Informa-
tion and Control, 8:553–578, 1965.

[JKS98] Nataša Jonoska, Stephen A. Karl, and Masahico Saito. Three dimensional
DNA structures in computing. In Lila Kari, Harvey Rubin, and David H.
Wood, editors, Proceedings of the 4th DIMACS Meeting on DNA Based
Computers, held at the University of Pennsylvania, June 16-19, 1998,
pages 189–200, preliminary, 1998.

[JKS99] Nataša Jonoska, Stephen A. Karl, and Masahico Saito. Creating 3-
dimensional graph structures with DNA. In Rubin and Wood [RW99],
pages 123–135.

[Knu73] Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting
and Searching (2nd ed). Addison-Wesley, 1973.

[LL00] Michail G. Lagoudakis and Thomas H. LaBean. 2D DNA self-assembly
for satisfiability. In Winfree and Gifford [WG00].

[LSS99] Furong Liu, Ruojie Sha, and Nadrian C. Seeman. Modifying the sur-
face features of two-dimensional DNA crystals. Journal of the American
Chemical Society, 121(5):917–922, 1999.

[LWR00] Thomas H. LaBean, Erik Winfree, and John H. Reif. Experimental
progress in computation by self-assembly of DNA tilings. In Winfree and
Gifford [WG00].

[LYK+00] Thomas H. LaBean, Hao Yan, Jens Kopatsch, Furong Liu, Erik Winfree,
John H. Reif, and Nadrian C. Seeman. Construction, analysis, ligation,
and self-assembly of DNA triple crossover complexes. Journal of the Amer-
ican Chemical Society, 122:1848–1860, 2000.

[MSS99] Chengde Mao, Weiqiong Sun, and Nadrian C. Seeman. Designed two-
dimensional DNA Holliday junction arrays visualized by atomic force mi-
croscopy. Journal of the American Chemical Society, 121(23):5437–5443,
1999.



88 E. Winfree, T. Eng, and G. Rozenberg

[Rei99] John Reif. Local parallel biomolecular computing. In Rubin and Wood
[RW99], pages 217–254.

[Roz73] Grzegorz Rozenberg. Extension of tabled 0L-systems and languages. In-
tern. J. Comp. Inform. Sci., 2:311–336, 1973.

[RS97] Grzegorz Rozenberg and Arto Salomaa. Handbook of formal languages,
volume 2. Springer-Verlag, New York, 1997.

[RV78] G. Rozenberg and D. Vermeir. On ETOL systems of finite index. Infor-
mation and Control, 38:103–133, 1978.

[RV80] G. Rozenberg and D. Vermeir. On metalinear ETOL systems. Fundamenta
Informaticae, pages 15–36, 1980.

[RW99] Harvey Rubin and David Harlan Wood, editors. DNA Based Computers
III: DIMACS Workshop, June 23-25, 1997, volume 48 of DIMACS: Series
in Discrete Mathematics and Theoretical Computer Science, Providence,
RI, 1999. American Mathematical Society.

[See82] Nadrian C. Seeman. Nucleic-acid junctions and lattices. Journal of The-
oretical Biology, 99(2):237–247, 1982.

[See98] Nadrian C. Seeman. DNA nanotechnology: novel DNA constructions. An-
nual Review of Biophysics and Biomolecular Structure, 27:225–248, 1998.

[SWY+98] N. C. Seeman, H. Wang, X. P. Yang, F. R. Liu, C. D. Mao, W. Q. Sun,
L. Wenzler, Z. Y. Shen, R. J. Sha, H. Yan, M. H. Wong, P. Sa-Ardyen,
B. Liu, H. X. Qiu, X. J. Li, J. Qi, S. M. Du, Y. W. Zhang, J. E. Mueller,
T. J. Fu, Y. L. Wang, and J. H. Chen. New motifs in DNA nanotechnology.
Nanotechnology, 9(3):257–273, 1998.

[WG00] Erik Winfree and David K. Gifford, editors. DNA Based Computers V:
DIMACS Workshop, June 14-15, 1999, volume 54 of DIMACS: Series in
Discrete Mathematics and Theoretical Computer Science, Providence, RI,
2000. American Mathematical Society.

[Win96] Erik Winfree. On the computational power of DNA annealing and ligation.
In Richard J. Lipton and Eric B. Baum, editors, DNA Based Computers:
DIMACS Workshop, April 4, 1995, volume 27, pages 199–221, Providence,
RI, 1996. American Mathematical Society.

[WLWS98] Erik Winfree, Furong Liu, Lisa A. Wenzler, and Nadrian C. Seeman. De-
sign and self-assembly of two-dimensional DNA crystals. Nature, 394:539–
544, 1998.

[WYS98] Erik Winfree, Xiaoping Yang, and Nadrian C. Seeman. Universal com-
putation via self-assembly of DNA: Some theory and experiments. In
Laura F. Landweber and Eric B. Baum, editors, DNA Based Computers
II: DIMACS Workshop, June 10-12, 1996, volume 44, Providence, RI,
1998. American Mathematical Society.



From Molecular Computing to Molecular
Programming

Masami Hagiya

Graduate School of Science, University of Tokyo
hagiya@is.s.u-tokyo.ac.jp

Project home page: http://hagi.is.s.u-tokyo.ac.jp/MCP/

Abstract. The purpose of this article is to survey the research in molec-
ular computing, including the achievements of the Japanese Molecular
Computer Project, and foresee the future of the field. In addition to
describing the major achievements of the project, Suyama’s Dynamic
Programming Molecular Computer and Sakamoto’s Hairpin Engines, we
summarize the computational paradigms related to molecular computing
in order to provide a perspective on the field. We finally explain the idea
of molecular programming, that the author is currently advocating.

1 Introduction

The Japanese Molecular Computer Project, sponsored by the Japan Society
for the Promotion of Science, began in October 1996 and will end in March
2001 [8]. The major achievements of the project include Suyama’s Dynamic
Programming Molecular Computer, which drastically reduces the number of
molecules in Adleman-style DNA computations and allows for automation by
robots, and Sakamoto’s Hairpin Engines, which employ hairpin forms, the typ-
ical secondary structures taken by DNA, for molecular computations. These
achievements are supported by a series of theoretical studies by Yokomori’s the-
ory group, Nishikawa’s simulator for DNA computations, Arita’s recent work on
code design, etc.

In particular, Sakamoto’s two types of Hairpin Engine, Whiplash PCR and
SAT Engine, are of great importance to the community of molecular computing,
primarily because essential computational steps are implemented by self-directed
hairpin formation, and no operations are necessary outside the test tube. Hairpin
Engines thus realize a kind of autonomous molecular computation. This work also
suggests the importance of programming molecules. In order to control successive
autonomous reactions, including secondary structure formation, we should go
beyond simple code design and carefully program DNA sequences. We believe
that the technology of programming molecules should be one of the central
research issues in the next decade. If it is ever established, it will be applied not
only to computation, but also to many areas of molecular science.

This article surveys the research in molecular computing, including the above-
mentioned achievements of our project, and foresees the future of the field.

A. Condon (Ed.): DNA 2000, LNCS 2054, pp. 89–102, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



90 M. Hagiya

Molecular computing aims to analyze the computational power of bio-
molecules such as DNA and protein, and seek engineering applications of the
analyses. Engineering applications are not restricted to computers; they include
any system that has information processing capabilities at the level of molecules.
Information processing in nanomachines, for instance, should inevitably be
implemented by molecular computation. Molecular biology, pharmacy, and
medicine are also considered possible application areas. In particular, the ap-
plication of molecular computation to biotechnology has recently been called
computationally inspired biotechnology.

This article starts with Adleman-style DNA computing, which we call the
Adleman-Lipton Paradigm, and efforts to improve the paradigm, including
Dynamic Programming Molecular Computer. We then introduce the field of
autonomous molecular computing, which tries to analyze computations by
molecules in pure forms, and describe the achievements of the field, including
Hairpin Engines. In order to provide a wider perspective of molecular com-
puting, we also summarize the related computational paradigms. They include
H-system, P-system, concurrency calculi, cellular computing, amorphous com-
puting, etc. In the last section, the concept of molecular programming, which the
author is currently advocating, is briefly described.

2 Improvements of the Adleman-Lipton Paradigm

In 1994, Adleman reported in Science a method of solving the Hamiltonian path
problem using DNA molecules, and an experiment in which he actually solved
the problem for a 7-vertex directed graph by the method [2]. Lipton generalized
Adleman’s method and proposed an approach to solving NP-complete problems
by DNA molecules, in particular, the satisfiability problem of Boolean formulas
(the SAT problem) [11]. In this article, we call this approach to DNA computing,
proposed by Adleman and established by Lipton, the Adleman-Lipton Paradigm.

The Adleman-Lipton Paradigm solves combinatorial optimization problems,
such as NP-complete problems, using DNA molecules. Each solution candidate
of a problem is represented by a DNA molecule. The paradigm consists of the
following two steps.

(1) Solution candidates are randomly generated.
(2) Real solutions are selected from among the generated candidates.

In the first step, the ability of DNA molecules to hybridize with one another
through Watson-Crick base-pairing is exploited. In Adleman’s experiment, ver-
tices and edges in a directed graph are represented by single-stranded DNA
molecules. They hybridize together to form a double-stranded DNA molecule
that represents a path in the graph.

In the second step, real solutions are selected by molecular biology operations.
Each operation is applied to all the candidates in a test tube. This step is a
typical data-parallel computation.



From Molecular Computing 91

The complexity of these molecular computations can be measured by the
required time and the number of necessary molecules. Since the Adleman-Lipton
paradigm reduces the time by sacrificing the number of molecules, the size of
problems solvable by this method is limited by the number of molecules required
for computations. So, the crucial point of the paradigm is how to reduce the
number of potential candidates.

Many improvements upon the Adleman-Lipton paradigm have been pro-
posed. Among others, Suyama et al. have proposed an iterative approach. Rather
than generate all of the random candidates prior to selection, generation and se-
lection of partial solutions is repeated [12]. In this approach, once candidates of
partial solutions are identified, those that cannot be extended to a total solution
are immediately removed. The remaining partial solutions are then extended,
and the process is reapplied to these extended partial solutions.

Utilizing this approach, Suyama et al. designed an algorithm for solving the
satisfiability problem of 3-literal clausal formulas (the 3-SAT problem) [25]. A
similar algorithm had been independently proposed by Ogihara and Ray [14], but
Suyama et al. actually implemented their algorithm using DNA molecules. The
algorithm does not generate assignments of all the variables at once. Rather it
extends partial assignments for one variable at a time. Those partial assignments
that cannot be extended to complete satisfying assignments are removed.

Using this algorithm, they succeeded in solving a 4-variable 10-clause instance
of the 3-SAT problem [25]. Currently, they are developing a DNA computing
robot, shown in Fig. 1, with which they plan to solve a 30-variable 100-clause in-
stance of the problem. According to Suyama’s estimation, solving a 100-variable
instance is not impossible. However, even if a 100-variable instance of the 3-
SAT problem could be solved, DNA computers would not outperform electronic
computers. Breakthroughs are required both in experimental technologies and in
algorithms, before molecular computers based on the Adleman-Lipton paradigm
can solve problems that are beyond the capability of electronic computers.

3 Autonomous Molecular Computing

In the first step of the Adleman-Lipton paradigm, solution candidates are gen-
erated by the ability of DNA molecules to hybridize together. In this step, the
computation proceeds without any operations outside the test tube. On the other
hand, in the second step, a large number of laboratory operations are applied
from outside the tube.

Molecular computations are called autonomous if they proceed by succes-
sive autonomous reactions of molecules. The first step of the Adleman-Lipton
paradigm is a typical example of autonomous molecular computation. They are
also called one-pot reactions, because they autonomously proceed in a single
test tube once the necessary ingredients are put into the tube initially. Research
on autonomous molecular computation is considered to analyze the computa-
tional power of molecules in pure forms. In the rest of this section, we describe
Sakamoto’s research after briefly touching upon Winfree’s.



92 M. Hagiya

Fig. 1. Suyama’s robot.

3.1 Winfree’s DNA Tiles

Hybridization of DNA molecules is also called self-assembly, because DNA
molecules autonomously assemble together. The computational power of self-
assembly by DNA molecules has been thoroughly investigated by Winfree [23].
In particular, he pointed out the computational power of DNA molecules called
DNA tiles. Double-crossover molecules are typical examples of DNA tiles (Fig. 2,
lower left). These are structures made of two double-stranded molecules which
exchange their single strands at two points. Each double-crossover molecule is
composed of four single strands that self-assemble.

Fig. 2. Winfree’s DNA tiles.



From Molecular Computing 93

Double-crossover molecules can also self-assemble together and form a planar
structure [22], because they have four sticky ends, each hybridizing with a sticky
end of another molecule (Fig. 2, right). This process of self-assembly corresponds
to that of square tiles that have colored edges and can hybridize only if adjacent
edges are of the same color (Fig. 2, upper left).

The tiling process of square tiles with colored edges is known to have
high computational power [23]. For instance, it can simulate execution of one-
dimensional cellular automata, and thus has universal computability.

3.2 SAT Engine

Sakamoto and his group, which includes the author, have been investigating
computational schemes employing hairpin forms of DNA molecules. So far, they
have proposed two computational schemes and have finished preliminary exper-
iments for their implementation. Hairpin forms are the most fundamental of
the secondary structures taken by DNA molecules. In this sense, the work of
Sakamoto et al. is considered the first step towards establishing computations
employing molecular structures. Sakamoto calls these computational schemes
based on hairpin formation Hairpin Engines.

SAT Engine, recently reported in Science, is a computational scheme for
solving the satisfiability problem of clausal formulas [19]. Since a clausal formula
is a conjunction of clauses, to satisfy such a formula is to satisfy all of its clauses.
Since a clause is a disjunction of literals, to satisfy a clause is to satisfy at least
one of its literals. Therefore, in order to satisfy a clausal formula, it suffices to
select one literal from each clause and compose an assignment by the selected
literals. For instance, if literal a is selected from the clause, (a ∨ ¬b ∨ c), then a
is made true in the composed assignment. If ¬b is selected, b is made false. If a
variable and its negation are both selected (from different clauses), it is impos-
sible to compose an assignment since they are inconsistent. On the other hand,
if inconsistent literals are not selected, one can obtain a satisfying assignment.

SAT Engine is based on the idea to represent complementary literals, i.e., a
variable and its negation, by Watson-Crick complementary sequences of DNA.
The literals selected from the clauses are concatenated into one single-stranded
DNA molecule. If the selection contains inconsistent literals, the molecule con-
tains complementary sequences and forms a hairpin structure (Fig. 3). If the
selection is consistent, the molecule does not form a hairpin structure. There-
fore, it is possible to decide whether a clausal formula is satisfiable by generating
a random pool of molecules, each composed of literals selected from clauses, and
distinguishing the molecules with hairpins from those without hairpins.

SAT Engine uses the following two methods to distinguish hairpins from
non-hairpins.

(1) The recognition site of a restriction enzyme is inserted into the middle of a
sequence encoding a literal. Molecules with hairpins are cut by the enzyme.

(2) The efficiency of amplification by PCR differs for molecules with hairpins
and without hairpins. The former kind of molecule is less efficient in am-
plification than the latter. Sakamoto developed a new kind of PCR, called



94 M. Hagiya

Fig. 3. Inconsistent assignment.

exclusive PCR (ePCR), which exaggerates the difference between the two
kinds of molecules.

Using the above two methods, molecules with hairpins and molecules without
hairpins can be separated. Although this process does require a number of lab-
oratory operations, the most important part of the computation, the detection
of inconsistent assignments, is realized by hairpin formation, which is an au-
tonomous reaction of the molecules. Note also that the number of laboratory
operations is not dependent on the number of variables or clauses. Sakamoto et
al. actually solved a 6-variable 10-variable instance of the 3-SAT problem [19].

3.3 Whiplash PCR

Whiplash PCR is a method to realize state machines using DNA molecules [7].
Sakamoto et al. have been trying to implement state machines that have internal
programs, using DNA molecules. Remember that the Adleman-Lipton Paradigm
is a computational scheme for data-parallel computations, in which programs
are realized as sequences of laboratory operations. In contrast to the Adleman-
Lipton Paradigm, Sakamoto et al. tried to represent programs by the molecules
themselves. If each molecule has its own program, program-parallel computations
can be implemented.

Whiplash PCR is based on the idea that the 3′-end of a single-stranded
DNA molecule encodes the current state of the machine implemented by the



From Molecular Computing 95

Fig. 4. Whiplash PCR.

molecule. It also contains a table for state transitions, which is the program of
the machine. As in Fig. 4, the state transition table is a repetition of sequences,
each of which is a concatenation of the stopper sequence (stopper), the state
before the transition (State′

i) and the state after the transition (Statei).
By taking a hairpin form, the 3′-end hybridizes with some before-state

(Statei) in the transition table of that molecule. This molecule is extended
by the DNA polymerase. As a consequence, the complement of the after-state
(State′

i) is attached to the 3′-end. This means that the current state is changed
from Statei to State′

i. As in the figure, if the hairpin structure is denatured
and another hairpin is formed, the next transition can occur. It is reported that
several (about five) transitions have been experimentally confirmed [10].

The stopper sequence leads to cessation of extension by the DNA polymerase.
There are many methods of implementing the stopper sequence. One that has
been implemented is to have only three of the four possible deoxyribonucleotide
triphosphates in the reaction buffer, and represent the stopper sequence as a
polynucleotide of the base that is complementary to the one that is absent from
the reaction mixture.

By appropriately designing transition tables, it is possible to implement many
kinds of computation by Whiplash PCR. Sakamoto et al. proposed a computa-
tional scheme in which both a program that evaluates a µ-formula (read-once
Boolean formula) and an input to the program are put on a single DNA molecule.
This molecule then behaves as an independent computational unit and computes
the value of the formula as a function of the input [7].



96 M. Hagiya

4 New Computational Paradigms

Around molecular computing, a number of new computational paradigms are
emerging. These include:

– DNA computing
– molecular computing
– chemical computing
– aqueous computing
– crystal computing
– cell computing
– gel computing
– amorphous computing

These computational paradigms can be classified within the context of molecular
computing into four kinds of computation:

(1) computing inside a single molecule
(2) computing by interactions among molecules
(3) computing with membranes
(4) computing with geometry

Note that each group is a source of great computational power. Also, there are
connections between these groups.

4.1 Computing Inside a Single Molecule

Hairpin Engines are typical examples of computation inside a single molecule.
In both SAT Engine and Whiplash PCR, computation is implemented by con-
formational change or structural formation of a DNA molecule.

Protein folding is also a typical example of structural formation by a single
molecule. Fraenkel was the first to explicitly state the relationship between pro-
tein folding and computation [6]. He showed that protein folding is NP-complete
by reducing the energy minimization problem of spin glasses, which was known
to be NP-complete, into the protein folding problem. This result, however, is
purely theoretical and there is a big gap between Fraenkel’s model and an ac-
tual protein.

There are some proposals to implement nano-scale memory by partial mod-
ification of a single molecule. Although such proposals do not provide universal
computational schemes, they would become the first practical molecular comput-
ers. In the Stickers Model of Roweis et al., read/write memory is implemented by
attaching short DNA molecules, called stickers, to a long single-stranded DNA
molecule [17].

Head and Yamamura showed that even write-once memory has high com-
putational power [9]. They proposed Aqueous Computing, in which write-once
memory is used to solve NP-complete problems such as the max clique prob-
lem. In their current approach, write-once memory is implemented by a plasmid



From Molecular Computing 97

containing sequences called stations, each corresponding to one bit. A station is
surrounded by the recognition sites of the same restriction enzyme, and writing
on a station is implemented by removing the station from the plasmid through
sequential restriction endonuclease digestion and ligation.

4.2 Computing by Interactions among Molecules

Typical examples of computation by molecular interactions are those by hy-
bridization of DNA molecules. Almost all the computational schemes proposed
in the field of DNA computing employ DNA hybridization. Hybridization of
DNA is also called self-assembly, because DNA molecules autonomously assem-
ble together.

Winfree characterized the computational power of self-assembly for vari-
ous forms of DNA molecules [23]. He showed that the set of double-stranded
molecules that can be formed by self-assembly from a finite set of single-stranded
molecules is a regular language. If branching is allowed in double-stranded
molecules, the power of self-assembly is increased to that of context-free lan-
guages, because branching molecules can represent structures corresponding to
the derivation trees of a context-free grammar. Furthermore, the self-assembly
of DNA tiles is universally computable (Section 3.1).

The splicing system introduced by Head, also known as the H-system, is a
formal model of recombination of DNA, i.e., cutting by restriction enzymes and
concatenation by ligase [16]. Long before Adleman’s work, Head had modeled
reactions of restriction enzymes and ligase, which are now employed in many
computational schemes of DNA computing. So far, a huge number of theoretical
studies on the H-system have been done from the perspective of formal language
theory.

Abstract chemistry is a field in artificial life that investigates molecular in-
teractions in terms of artificial chemical systems. A large number of abstract
chemical systems have been proposed and analyzed by simulations (e.g., [4]).
Studies on cellular automata can also be classified in the same research direc-
tion.

Computational schemes involving combinations of self-assembly and confor-
mational change of molecules have also been proposed. It is known that by
allowing molecules to change their structures, the computational power of self-
assembly increases [24,18].

4.3 Computing with Membranes

Membranes are the most basic device for dividing solutions into separate parti-
tions. Since solutes cannot move across a membrane, independent reactions can
occur in each partition of the solution. A partition divided by a membrane is
called a compartment.

Several methods for implementing membranes are known. Mechanical-
electrical micro-systems (MEMS ), or chemical IC, are small chemical plants



98 M. Hagiya

implemented on a chip consisting of small reaction chambers, each considered to
be a compartment. Liposomes are small spheres made of lipid bilayers that sepa-
rate solutions into an inside and outside. There are some proposals for computing
with liposomes, but their implementation is not easy.

A cell is the most typically encountered compartment. Many ideas have been
proposed for computing with living cells. Reactions in a cell that can be em-
ployed for computation include metabolism, gene regulation and signal trans-
duction. Creation of cell machines by artificially regulating such reactions has
been proposed [21].

Many formal models have been proposed for computing with membranes.
Concurrency calculi, such as chemical abstract machines [5], are examples of such
models. So far, many calculi, including π-calculus, join calculus, and ambient
calculus, have been proposed, but they are not strongly related to actual chemical
reactions.

The P-system, proposed by Păun, is also a formal model for computing with
membranes [15]. Strings are rewritten inside a membrane. Deletion of a mem-
brane is also regulated by a rewrite rule. Like the H-system, the P-system has
been investigated from the perspective of formal language theory.

4.4 Computing with Geometry

Computations with a membrane employ the very simple topology consisting of
the inside and outside of the membrane. Computations with a richer topology,
including 2-D or 3-D geometry, are worth investigating. For instance, each DNA
tile in the entire structure has a 2-D or 3-D coordinate. Computations employing
the coordinate of each tile would be very powerful.

Amorphous computing, proposed by Abelson et al., is a computational
paradigm with computational particles scattered in a 2-D or 3-D field in an
amorphous fashion [1]. Since it does not assume regular crystal structures, it
would have many applications.

Each computational particle can emit transmission substances that diffuse
and reach another particle, which senses the substances, changes its internal
state, and emits its own transmission substances. Abelson et al. developed algo-
rithms for computational particles to acquire positional information and create
patterns. They even developed a programming language for describing the pat-
terns. To implement amorphous computing, they propose cellular computing [17].

Amorphous computing is independent from molecular computing, but there
are strong relationships between the two ideas. For example, it would be possible
to implement amorphous computing with DNA tiles. Gel can also be employed
for amorphous computing.

5 Molecular Programming

In molecular computing, engineering viewpoints are considered very important,
because they distinguish molecular computing from related research fields such



From Molecular Computing 99

as mathematical biology, complex systems, artificial life, etc. The ultimate goal
of molecular computing should be to synthesize artificial information process-
ing systems at the molecular level. To achieve this goal, new computational
paradigms, new algorithms, and new programming languages need to be devel-
oped. We use the phrase, molecular programming, to explicitly denote research
into this synthetic approach.

Molecular programming is a field that aims to program reactions of bio-
molecules. Programs that control reactions of biomolecules are classified into
those that are encoded in molecules themselves, and those that are implemented
as sequences of laboratory operations. The former kind of program is character-
istic to biomolecules that have combinatorial complexity and autonomous com-
putational power. By coordinating the former and latter kinds of programs, it
should be possible to control reactions of biomolecules and thus realize molecules
or molecular systems with the intended functions and structures.

In a sense, molecular programming is everywhere. In PCR, for instance, it is
important to design good primer sequences, and this is an example of the first
kind of programming. In addition, choosing appropriate reaction conditions, such
as temperature, salt concentration, etc., is also important, and is the second kind
of programming. Only by coordinating the two programs, it is possible to have
efficient amplification.

Another example of the first kind of programming is the code design of DNA
sequences in molecular computing. This problem is related to the design of PCR
primers, and it has been actively investigated in the field of molecular comput-
ing (e.g., [3]). As the second kind of programming, we can classify research on
modeling and simulating chemical reactions (e.g., [13]).

A more sophisticated example of molecular programming is that of DNA
chips. Suyama has been developing a universal DNA chip [20], where mRNA
transcripts are first converted to standard DNA sequences, which Suyama calls
DNA coded numbers (DCN’s), and the DCN’s are then hybridized with oligomers
attached to the DNA chip (Fig. 5). The process to convert mRNA transcripts to
DCN’s employs template sequences that hybridize with both the mRNA tran-
scripts and the DCN’s.

By changing the set of template sequences, it is possible to change the con-
version and thus change the set of mRNA that can be detected by the chip. In
this sense, the chip is universal.

Based on the universal chip, we can further develop a more intelligent DNA
chip. Rules for genetic diagnoses are in general of the following form:

If gene A is expressed, gene B is not expressed and gene C is expressed,
then there is a danger of disease D.

This kind of rule can be naturally represented by a Boolean formula (or decision
diagram). Since a large number of methods for evaluating Boolean formulas using
molecules have been proposed, including Whiplash PCR, it is possible to make
such diagnoses by DNA computation.

In Suyama’s universal chip, mRNA transcripts are converted to DCN’s.
Therefore, DCN’s can be directly used for computation. Using Whiplash PCR,



100 M. Hagiya

Fig. 5. Suyama’s universal DNA chip.

even rules for diagnoses can be represented by molecules, so all the information
processing can be done in a test tube.

The advantages of this intelligent DNA chip are:

– The mRNA transcripts need not be sequenced.
– Less information is revealed using a digital form. The data on mRNA tran-

scripts are not revealed. In some cases, the rules for diagnoses can also be
kept secret.

The above-mentioned intelligent DNA chips are one of the anticipated ap-
plications of molecular programming. Because of its fundamental nature, the
application areas of molecular programming are considered broad and to cover
various fields related to biomolecules, including genetic analysis, nanotechnology,
nanomachine engineering, and combinatorial chemistry.

Acknowledgements. We deeply thank all the members of the Japanese Molec-
ular Computer Project, which is supported by the Japan Society for the Promo-
tion of Science under grand JSPS-RFTF 96I00101.



From Molecular Computing 101

References

1. Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George Homsy, Thomas
F. Knight, Jr., Radhika Nagpal, Erik Rauch, Gerald Jay Sussman, and Ron Weiss:
Amorphous Computing, Communications of the ACM, Vol.43, No.5, pp.74–82,
2000.

2. Leonard M. Adleman: Molecular Computation of Solutions to Combinatorial Prob-
lems, Science, Vol.266, pp.1021–1024, 1994.

3. Masanori Arita, Akio Nishikawa and Masami Hagiya: Improving Sequence Design
for DNA Computing, Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2000, July 10–12, Las Vegas, Nevada, pp.875–882, 2000.

4. Wolfgang Banzhaf, Peter Dittrich and Burkart Eller: Selforganization in a system of
binary strings with topological interactions, Physica D, Vol.125, pp.85–104, 1999.

5. Gérard Berry and Gérard Boudol: The Chemical Abstract Machine, the 17th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1990,
pp.81–94. Theoretical Computer Science, Vol.96, 1992, pp.217-248.

6. Aviezri S. Fraenkel: Protein Folding, Spin Glass and Computational Complexity,
DNA Based Computers III, DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, Vol.48, pp.101–121, 1999.

7. Masami Hagiya, Masanori Arita, Daisuke Kiga, Kensaku Sakamoto and Shigeyuki
Yokoyama: Towards Parallel Evaluation and Learning of Boolean µ-Formulas with
Molecules, DNA Based Computers III, DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, Vol.48, pp.57–72, 1999.

8. Masami Hagiya: Perspectives on Molecular Computing, New Generation Comput-
ing, Vol.17, No.2, pp.131–140, 1999.

9. Tom Head, Masayuki Yamamura and Susannah Gal: Aqueous Computing: Writing
on Molecules, Congress on Evolutionary Computation, July 6–9, 1999, Mayflower
Hotel, Washington D.C., USA, pp.1006–1010, 1999.

10. Ken Komiya, Kensaku Sakamoto, Hidetaka Gouzu, Shigeyuki Yokoyama, Masanori
Arita, Akio Nishikawa and Masami Hagiya: Successive State Transitions with I/O
Interface by Molecules, DNA6, Sixth International Meeting on DNA Based Com-
puters, Leiden Center for Natural Computing, June 13–17, 2000, pp.1–30, 2000.

11. Richard J. Lipton: DNA Solution of Hard Computational Problems, Science,
Vol.268, pp.542–545, 1995.

12. Nobuhiko Morimoto, Masanori Arita and Akira Suyama: Solid Phase DNA Solu-
tion to the Hamiltonian Path Problem, DNA Based Computers III, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, Vol.48, pp.193–206,
1999.

13. Akio Nishikawa, Masayuki Yamamura and Masami Hagiya: DNA Computation
Simulator Based on Abstract Bases, Soft Computing, to appear, 2000.

14. Mitsunori Ogihara and Animesh Ray: DNA-Based Parallel Computation by
“Counting”, DNA Based Computers III, DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, Vol.48, pp.255–264, 1999.

15. Gheorghe Păun: Computing with Membranes, TUCS Research Report, No.208,
November 1998, www.tucs.fi.

16. G. Păun, G. Rozenberg, and A. Salomaa: DNA Computing, Springer, 1998.
17. Sam Roweis, Erik Winfree, Richard Burgoyne, Nickolas V. Chelyapov, Myron F.

Goodman, Paul W. K. Rothemund, and Leonard M. Adleman: A Sticker Based
Model for DNA Computation, DNA Based Computers II, DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, Vol.44, pp.1–29, 1999.



102 M. Hagiya

18. Kazuhiro Saitou: Self-Assembling Automata: A Model of Conformational Self-
Assembly, Pacific Symposium on Biocomputing’98, pp.609–620, 1998.

19. Kensaku Sakamoto, Hidetaka Gouzu, Ken komiya, Daisuke Kiga, Shigeyuki
Yokoyama, Takashi Yokomori and Masami Hagiya: Molecular Computation by
DNA Hairpin Formation, Science, Vol.288, pp.1223–1226, 2000.

20. Akira Suyama, Nao Nishida, Ken-ichi Kurata, Katsumi Omagari: Gene Expression
Analysis by DNA Computing, Currents in Computational Molecular Biology (ISBN
4-946443-61-4), pp.12–13, 2000.

21. Ron Weiss and Thomas F. Knight, Jr.: Engineered Communications for Microbial
Robotics, DNA6, Sixth International Meeting on DNA Based Computers, Leiden
Center for Natural Computing, June 13–17, 2000, pp.5–19, 2000.

22. Erik Winfree, Furong Liu, Lisa A. Wenzler, and Nadrian C. Seeman: Design and
self-assembly of two-dimensional DNA crystals, Nature, Vol.394, pp.539–544, 1998.

23. Erik Winfree, Xiaoping Yang and Nadrian C. Seeman: Universal Computation via
Self-assembly of DNA: Some Theory and Experiments, DNA Based Computers
II, DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
Vol.44, pp.191–213, 1999.

24. Takashi Yokomori: YAC: Yet Another Computation Model of Self-Assembly, Pre-
liminary Proceedings of the Fifth International Meeting on DNA Based Computers,
June 14–15, 1999, Massachusetts Institute of Technology, pp.153–167, 1999.

25. Hiroshi Yoshida and Akira Suyama: Solutions to 3-SAT by Breadth First Search,
Preliminary Proceedings of the Fifth International Meeting on DNA Based Com-
puters, June 14–15, 1999, Massachusetts Institute of Technology, pp.9–20, 1999.



A. Condon (Ed.): DNA 2000, LNCS 2054, pp. 103–116, 2001.

© Springer-Verlag Berlin Heidelberg 2001

Graph Replacement Chemistry for DNA Processing

John S. McCaskill1 and Ulrich Niemann2

1GMD-National Research Center for Information Technology
Schloß Birlinghoven, St. Augustin 53754, Germany

2Institut für Molekulare Biotechnologie,
Beutenbergstr. 11, D-07745 Jena
email: mccaskill@gmd.de

Abstract. The processing of nucleic acids is abstracted using operators on
directed and labeled graphs. This provides a computational framework for
predicting complex libraries of DNA/RNA arising from sequences of reactions
involving hybridisation intermediates with significant combinatorial
complexity. It also provides a detailed functional classification scheme for the
reactions and side-reactions of DNA processing enzymes. It is complementary
to the conventional string-based DNA Computing grammars such as splicing
systems, in that the graph-based structure of enzyme-nucleic acid complexes is
the fundamental object of combinatorial manipulation and in that the allowed
reactions are specified by local graph replacement operators (i.e. catalysts for
structural transitions) associated with enzymes. The focus of the work is to
present a calculus for the compact specification and evaluation of the combined
action of  multiple DNA-processing reactions. Each enzyme and its side-
reactions may be classified by a small set of small graph replacement operators.
Complex replication and computation schemes may be computed with the
formalism.

1.   Introduction

This work describes a formalism for dealing with the combinatorial complexity of
enzymatically-catalysed reactions in nucleic acid complexes, which makes them useful
for complex diagnostics and DNA Computing. The general framework may be useful
for other domains of combinatorial chemistry such as protein or carbohydrate
chemistry. Chemical reactions are introduced as families of local term replacements
(productions) in a graph replacement system. As such, the work is in the tradition of
the string rewriting systems introduced by Thue[1], which has been extended to the
graph[2] and term[3] rewriting systems which with the concept of reduction have
played an important role in the modern theory of programming languages. Apart from
the application to molecular computation, the current work differs from the
conventional focus of this tradition in two respects. Chemical structures are seen not
only as the terms themselves but also as encoding the rewriting rules which act on
chemical structures. Secondly, in DNA processing it makes a major difference
whether  a molecule is reconverted to itself or creates a copy of itself (these are not
distinguished in the "word problem" of string rewriting systems).



104         J.S. McCaskill and U. Niemann

The cyclical manipulations of DNA giving rise to isothermal amplification are useful
but rare properties of DNA processing systems which can be computed by the current
approach. Formal artifical chemistries have been studied by many authors,
culminating in the lambda calculus chemistry of Fontana4. The current work seeks to
complement these studies in a more practical way, by staying close to the known
structural and catalytic mechanisms of DNA processing and providing a bridge to the
experimental design of combinatorially complex DNA interconversion and
amplification systems.

We briefly outline the major features of our polynucleotide graph processing
formalism. Both bimolecular recognition and unimolecular processing reactions can
be specified compactly by extending standard graph replacements to include variables
(both as edges and labels). The analysis of new amplification schemes requires both
the distinction between multiple copies of a structure (i.e. multi-sets), and reactions
which generate multiple product complexes. Multi-step reactions are decomposed into
their component reactions, allowing iterative reactions such as polymerisation to be
described compactly; for example in terms of initiation, elongation and termination.
Multiple product complexes (e.g. cleavage) are allowed. Catalysts and their
translocation in the course of reaction may be treated explicitly or implicitly. Such a
compact specification of reactions and catalysis is useful both for an investigation of
side-reactions in experiments involving reactions among nucleic acids, such as
amplification cycles and for DNA Computing, and for an investigation of minimal
catalytic sets for generating combinatorial product families.

The basic concepts of molecular graphs are introduced in section 2 followed by the
extension of graph replacement systems to molecular graph replacements in sections 3
and 4. A computer program MOLGRAPH (coded in C) which implements this
calculus is described in section 5. As an example, the application to an isothermal
amplification scheme based on the 3SRreaction[9]  is described in section 6.

2.   Molecular Graphs

A graph is composed of a set of vertices and a set of edges connecting two vertices[5].
A molecule consists of atoms and bonds between them. Their representation by graphs
using the one letter labelling of atoms and the single and double bond labelling of
bonds is standard. In the description of chemical reactions it is also common practice
to lump together functional groups (e.g. OH, COOH, CH3) and indeed whole
unaltered segments of molecules (e.g. R) as single nodes. For larger fragments as
nodes, there arises the problem of specifying the attachment point of edges to the
internal structure in the node. In the case of DNA, the two edges binding the monomer
into the backbone chain are labelled by their point of attachment (5’ or 3’ carbon atom)
to the ribose sugar ring. For the description of classes of reactions it will be necessary
to extend the usual labelling of graphs in two ways. Firstly each node and edge label is
divided up into a list of attribute-value pairs. Secondly each attribute value is ascribed
a property: variable or constant. Classes of graphs can be specified by such variable
graphs.



Graph Replacement Chemistry for DNA Processing         105

Definition 1: A variable graph is a vertex and edge labelled graph with a labelling set
SVE = A· VAR, where A is a set of attribute values and VAR is a set of attribute
properties in the form of strings representing variable names including the special
strings don’t care and match.

Variable graphs are introduced to allow more general matching between graphs. The
matching may consider not only the structure of the graph, but also attribute values of
a vertex or edge. The mutually exclusive flags - don't care, match or a variable name -
indicate how the corresponding attribute value will be treated in graph matching:
ignored, respected or a variable name. If a variable name is set, and the same variable
name appears repeatedly in the graph at different nodes or edges, the variable binding
is assumed constant. When at most one edge of a given type can occur at each vertex,
the labelling can be restricted to only vertices. This is the case for the polynucleotide
graphs below. A variable name on an edge then implies that a graph with or without
the edge can be matched.

The three types of edges in nucleic acid graphs correspond to the 5’ and 3’ backbone
covalent bonds and the hydrogen bonding mediated base pairing. Both vertex and
edge labels will later be associated with a binary value, determining matching
behaviour in a simplification of the variable graph concept (simple variable graphs)
see section 4 below. For the moment, we introduce the molecular graphs used in the
applications without this extension to variables.

Definition 2: A nucleic acid molecular graph G  = (V, E, l, SVE) is a vertex and edge
labelled graph of maximal degree 3, a label set SVE = (lab ·  type ·  B ·  rev ·  enz)¨
{prev, next, hybrid}  where lab is a set of labels, type = {RNA, DNA},
B={A,G,C,T/U}, rev={0,1}, enz is a set of enzyme labels, and prev, next and hybrid
are edge labels. The directed edges of the next (prev) class point in the 5’-3’ (3’-5’)
direction. The edges labeled hybrid join hydrogen bonding bases (base pairs).

For practical graph calculus with nucleic acids it is often convenient to lump together
chains of successive identically bonded monomers into oligonucleotides.

Definition 3: A polynucleotide molecular graph G = (V, E, L, SVE ) is a nucleic acid
molecular graph with the base attribute of the label set SVE replaced by seq = B+ , i.e.
the set of all nucleic acid base sequences.

While in a nucleic acid molecular graph each vertex represents a nucleotide, a vertex
in a polynucleotide molecular graph represents a sequence of nucleotides. Reverse
complementary oligonucleotides can form double strands via hybridisation. With the
complement mapping‘ :BfiB defined by A T U C G G C T U A= = = =/ , , , / , we
can define the reverse complement mapping B+fiB+ as revcomp(a1a2 ... an) = ‘an‘an-1

... ‘a1. A polynucleotide molecular graph G with its directed edges is shown in fig. 1.
Since between two nodes only these directed „double edges“ exist, from now on we
shall display them by simple edges.



106         J.S. McCaskill and U. Niemann

3.   Graph Replacement Systems

Chemical reactions changing the structure of molecules can be described on the graph
level as deletion/insertion of edges, deletion/insertion of nodes or as a change in
attributes. Rules for such reactions can be captured in a graph replacement system. In
this section we outline the basic definitions. These are needed for the formulation of
reactions on variable molecular graphs in section 4.

A graph replacement system consists of one or a set of starting graphs and a set of
replacement rules. A graph grammar [6] is a special graph replacement system and
generally describes a set of graphs, called its language. A graph belongs to the
language when it can be derived from the starting graph of the graph grammar using
the replacement rules. A derivation consists of a succession of applications of such
rules. Graph replacement systems now play a special role within the general context of
term rewriting systems in symbolic algebra and the theory of programming
languages[3].

In the study of graph grammars it is mainly important to produce the graphs of the
language by finite application of rules, or to decide whether a graph belongs to the
language or not, whereas in the case of the more general graph replacement systems
the precise description of the dynamics of graph changes is significant.

The application of a replacement rule B1ÃB2 is carried out in three steps:
a) search for and eliminate the part of the graph G defined by B1, leaving graph L.
b) replace the eliminated part by a second graph, defined by the r.h.s. of the rule.
c) after the exchange,  embed the added graph into the rest graph.

�¶

�¶

�¶

�¶
Q
S

Q
S

Q
S

Q
S

Q
S

Fig.  1 Polynucleotide molecular graph G: graphical abbreviation. On the left G
is with dual directed edges and on the right with the short graphical representation
used hereafter. The prev (p) and next (n) edge pairs are converted to an arrow which
points into the 5’ to 3’ direction. In the data structures however, both these and the
hybrid edges (dotted) are really two separate edges with opposing directions.

L B1 L B2 L B2

1.Search 2.Replacement 3.Embedding

Fig. 2. Application of a rule of a graph replacement system in three steps.



Graph Replacement Chemistry for DNA Processing         107

The way in which the embedding takes place depends on the graph replacement
model used. For an algebraic approach see [7]. We make some conditions on our
replacement rules R Þ  P (acting on molecular graph M):
• Corresponding vertices in R and P get the same labels. In this way a bijective

mapping (identity) is maintained between nodes represented in R and P .
• If a vertex v is deleted in M (resp. built in M) with a replacement rule, we

demand that all neighbours N(v) are in R (resp. P), i.e. V(R)-{vertices to
delete} = V(P)-{new vertices}.

The embedding mechanism of our approach is:
1) Match R in M as a subgraph, so we get corresponding vertices of R in M.

[i.e. a mapping m: V(R) fi V(M) is given].
2) For all edges in R, delete the corresponding ones in M.

[" (v,w)˛ E(R):  delete (m(v),m(w))˛ E(M)].
3) For all vertices v, which are in P but not in R, insert v in M.

[" v˛ V(P)\V(R):  V(M) = V(M)  ̈{ v }].
4) For all edges in P, insert corresponding edges in M.

[" (v,w)˛ E(R): V(M) = V(M)  ̈{ (m(v),m(w)) }].
The theory of graph replacement systems with variable graphs appears somewhat
different from that developed within the context of graph or term rewriting
systems[2][3]. In any case, the questions relevant to understanding catalytic DNA
reaction networks are not primarily equivalence or reduction to normal form: in
general sets of interacting graphs must be considered with the replacement rules
themselves being generated by graph operations. This is a further extension beyond
programmed structure replacement systems[8].

4. Molecular Graph Reactions

We can distinguish the following classes of chemical reactions. Higher order reactions
are usually decomposable as a series of at most bimolecular steps.
• unimolecular reactions: here only one

reactant is involved. The molecule  reacts at
a local site described by a subgraph B1:

• bimolecular reactions:
here two local sites B1
and B2 in the molecules
react together. New edges
will be created between vertices of subgraphs B1 and B2:

• implicit enzymatic reactions: in the case of enzyme catalysis, where the
enzyme is unchanged in the course of the reaction, it is convenient in many
cases to treat the reaction like a unimolecular reaction (i.e. ignoring the specific
graph structure of the enzyme) and use a vertex tag rather than a new type of
labelled edge to indicate the point of attachment of the enzyme. From the point

B2B1 Bfi

B1 B2fi



108         J.S. McCaskill and U. Niemann

of view of a coherent theory however it is more natural to treat an enzyme with
unknown or constant structure as a single vertex.

The repeated action of local reactions can give rise to complex processes such as
polymerisation. Because our description is not restricted to the atomic level, molecular
reactions are not simply changes of the molecular structure but also changes of
attributes. We build on the graph replacement formalism outlined in the previous
section, but because attributes can be processed (e.g. variable binding) the
replacement operation must be a little more sophisticated in the case of variable
molecular graphs.

For the purposes of defining some classes of molecules, it suffices to restrict the
variable graph definition introduced above. In the case of the graph R-OH for
example, the R label is a don’t care, but in R-O-R it is a true variable implying that the
two groups forming the ether must be the same. When this common binding property
of variables is not required, it suffices to use a single bit for any attribute to indicate
don’t care.

Definition 4: A simple variable graph is a vertex and edge labelled graph with a label
set SVE = A1·… · An· {0, 1}n, where the Ai are a finite number n of sets of attribute
values. The ith attribute is attached to the ith binary flag, mi.

This structure induces a mapping m: Afi{0,1} which is used to specify constant and
don’t care attributes for matching. In what follows we use mv, Av etc. to denote the
above quantities restricted to the vertex v. As an example of such a simple variable
graph, for a polynucleotide molecular graph we have an induced mapping match: Vfi
{0, 1}8 specifying for each property at each vertex v either match or don’t care:

m˛ {0, 1}8 , m = m1 m2 m3 m4 m5 m6 m7 m8 (bit)
¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼

enz rev typ seq lab hybr. next prev (attribute)

transferring edge attributes to their adjoining nodes as discussed in section 1. As an
example, if a polynucleotide has binary flag 1 at two different nodes, it means that at
both these nodes either DNA or RNA oligonucleotides are allowed, independently.
This is different from the case of the same variable appearing for this attribute at both
nodes, which would instead imply both nodes would have to be an oligonucleotide of
the same type (e.g. either DNA or RNA).

Definition 5: A simple variable graph G = (V, E, SVE) matches a graph H, if
• G ˝  H   ( i.e.  $ j: V(G) fi V(H))  and
• " v ˛  V(G),  mi(v) = 0 Þ   ai(v) = ai(j(v)).

For every attribute with mi(v) = 0 we have to ensure that its value in G corresponds to
the value of the attribute in the matched vertex in H. Moreover there must be a
correspondence for those edges with a type attribute mi(v) = 0 between vertices of the



Graph Replacement Chemistry for DNA Processing         109

matched subgraph and vertices of the rest graph. In the case of polynucleotide
molecular graphs, if at v˛ G  mi(v) = 0 (6 £ i £ 8), it is not permitted that the
corresponding edge in graph H exists. If mi(v) = 1, the existence of the edge in the
graph H is not considered in the matching.

Examples of unimolecular and bimolecular reactions defined by variable graph
replacement rules are shown in fig. 3. As an example of the specification of enzymatic
reactions using vertex tags we have chosen the RNA transcription carried out for
example by the T7 RNA polymerase, see fig. 4. This enzyme along with two others
will be used in our application to coupled amplification in section 6.

It is possible to logically distinguish unimolecular from bimolecular reactions and
control the order in which reactions occur if desired. For example demanding that all
possible unimolecular reactions are completed before further bimolecular reactions
often provides a useful chemically founded simplification of the product spectrum,
suppressing reactions from short-lived intermediates in unimolecular reaction chains.

R Þ  P

S        S1,S2

L        L1,L2

M        M

Þ

A A

A’A’’

AP1 P2

P3’
A’

AP1 P2

P3’

A’

P3’A’

AP1 P2

P3 P4

P4P3

P1 P2

P3 P4

P4P3

P1 P2

P2

Þ

X Y

Y’

X Y

Y’X’

P3 P4

P4P3

P1 P2

Fig. 3. Unimolecular and Bimolecular Reactions as Subgraph Graph Replacements.
 (Left) A unimolecular reaction: template directed polymerisation. The reaction described in
the top line involves the local virtual reactant and virtual product, with variable labels marked
by circles on the vertices. The reactant S is matched in the centre, edges removed in L and
replaced by the virtual product (with bound variables) giving the product M.
(Right) A bimolecular reaction: template hybridisation. The local reaction involves two
separate subgraphs. Demanding matching to separate reactants yields a bimolecular reaction,



110         J.S. McCaskill and U. Niemann

5.   Molgraph: The Program and IO

We have implemented a program in C for molecular graph reactions. This program
reads start molecules in the form of molecular graphs and possible types of reactions
in the form of variable graph replacement rules from an ASCII-file. The program
computes all combinations of derivations from the start molecules and gives step by
step the results of each direct derivation to the screen. While the code is in principle
general, in the first instance we have focused our work on the application to nucleic
acid processing. The data structure of a molecular graph is captured primarily by the
bond-pointers in a vertex structure:
  struct vertex { struct vertex *bond[NBONDS]; // edges (NBONDS=3 for nucleic acid)

            struct label *lab; // vertex label
            unsigned match; // bit mask for vertex fields: variable or instance
            char *complex; // catalyst binding flag
            struct vertex *rc; // pointer for reaction complex
            int trace; } // flag, if vertex was visited

where for nucleic acids the label structure is:
  struct label { char *name; // vertex name

          char *sequence // nucleotide sequence
          int type; // vertex type (1:RNA, 2:DNA)
          int reverse; } // reverse flag

For matching purposes, the strands of a molecule (along the covalent backbone of 5’-3’
bonds) are stored in an extra strand list.  The strands of a molecule are ordered by
length and lexicographic order of the vertex label sequence in 5’-3’-direction. The
molecules are stored in a molecule list, where a strand pointer points to the first strand
of the molecule. The data structure of a replacement rule consist of one (unimolecular

Þ
P Y

Y’P ’
@

@

Y 1

P Y

Y ’P ’

In it ia t ion :

Þ @

@
X 1 Y1

X Y

Y ’X ’
@X1

X Y

Y’X ’
@

E lo ng a tion :

Þ
Y 1

X Y

Y ’X ’
@

@

X Y

Y’X ’T erm in a tion :

Fig.  4 T7 RNA polymerase action is captured by 3 replacement rules (reactions).
Symbols used are: °  vertex of RNA strand,   •  vertex of DNA strand,   X, Y, Z  variable
vertex names, @  catalyst binding flag, P T7-RNA-polymerase promoter with the nucleic acid
sequence "TAATACGACTCACTATA". An  - - - edge in the virtual reactant means a variable
bond, i.e. if absent, the matching proceeds iff  there is no bond in the molecule. The reaction
is initiated by enzyme binding,  the binding site(s) being tagged. In the elongation reaction,
the enzyme with its marking move across the molecule. Termination involves enzyme
separation and tag removal.



Graph Replacement Chemistry for DNA Processing         111

reaction) or two (bimolecular reaction) virtual reaction graphs R1 and R2 and a virtual
product graph P. The program builds a reactant-product complex PR as in fig. 5.

For the first step (matching) of a direct derivation, we go recursively through the
vertex structure of the molecule M and look for a matching. If a subgraph is found, we
will set

P virtual products P
Ý Ý
R virtual reactants R1, R2

Fig. 6. Two reactant-product complexes. Left a complex made of one virtual reactant and a
virtual product (unimolecular reaction). To the right a complex made of two virtual reactants
(their graphs are only one vertex) and a virtual product (bimolecular reaction). Pointers
between corresponding vertices (same label) of reactant and product build the complex.

pointers from the vertices of the virtual reactant R to the corresponding vertices of M
(figure 6). For the second and third step (remove and add), we go recursively through
the R and remove all edges in M corresponding to edges in R. Then we proceed
recursively through P. Finally, we add the corresponding edges, add vertices if they

reaction com plex PR  on M :

product M ’:

R  Þ  P

reactant M :

virtua l p roduct P

P1 P2 P3 P 4

P 4’P3’P2’

X Y

Y ’

virtua l reactant R

X Y

Y ’X’Þ

P1 P2 P3 P4

P4’P3’

P1 P2 P3 P4

P4’P3’

X Y

Y ’

X Y

Y ’X’

Fig.  5. Computation of a reaction given by the production R Þ  P. PR is the reaction complex
on molecule M. Note that P cannot match on vertices P3, P4, P4’, because P4’ has a NEXT-
edge to P3’, but in R  match6(X’) = 0 and X’ has no NEXT-edge.



112         J.S. McCaskill and U. Niemann

are new in P and change attributes of vertices in M, if required by the match mask of
the corresponding vertex in P.
As seen in definition 4, a simple variable graph has at each vertex a match-mask, 8
bits in the case of polynucleotides. Each bit represents one of the vertex attributes
(enzyme, reverse, type, sequence, label) and the three possible bonds (HYBRID,
NEXT, PREV). The values of a match control bit mean the following:
• in the virtual reaction graph, a bit describes which way the search is to be done. If the
bit for an attribute A is set to 0, the attribute values of the corresponding vertices in virtual
reaction graph and molecular graph have to be the same. If the bit is set to 1, the attribute
value will be ignored in matching. If the bit for an edge is 0, the corresponding vertices of
the virtual reaction graph and molecular graph must both either be joined by an edge or not.
If the bit is 1, the existence of this edge in the molecule plays no role in the matching.
Presently this holds only for edges between the matched subgraph and the rest graph of the
molecule.
• in the virtual product graph, a bit describes in which way the attribute of a vertex will
be changed. If the bit is 0, the value of an attribute will be determined by its value at the
corresponding vertex of the molecular graph. If the bit is 1, the attribute will be set to the
value at the virtual product graph vertex. The last three bits for bonds have no meaning
here.

The result of a direct derivation will be shown on the screen. The program checks for
the occurrence of the product molecules in the molecule list. If a product exists
already, a message is given, otherwise it is stored in the list receiving an ID number.
The program also recognises whether the computed molecule is one of the start
molecules. The program ends either when all reactions are done on all molecules, i.e.
there can not be created a new molecule from reactions on the existing molecules, or
after a certain number of derivation cycles.

6. Coupled Isothermal Amplification

In this section we present the results of an application of the molecular graph reaction
formalism to an experimental system of reactions which has been constructed in our
laboratory. Isothermal amplification of polynucleotides can be achieved by a multi-
step process called the 3SR reaction [9] involving the joint action of three enzymes:
primed reverse transcription of  ss-RNA to a DNA-RNA hybrid (RT), digestion of the
hybrid RNA (RNAse H), polymerisation to ds-DNA (RT) and then repeated
transcription of ss-RNA from this DNA (T7 RNA polymerase). The latter enzyme
reaction was presented as an example in section 4, fig 5. The other two enzymes are
shown in fig. 7.



Graph Replacement Chemistry for DNA Processing         113

Termination

Initiation

Elongation

Þ
X Y

YX

#

#

Þ
X Y

X
#

#

X Y

Þ

X Y

YX

#
X Y

YX #

X Y

X’
#

#

$

Þ
X Y

YX

$
X Y

YX $

Þ
X Y

Y

$

$

X Y

Y

Þ $
X Y

YX $

X Y

Y

$

Fig.  7. RNAse H (left) and reverse transcriptase RT (right) as graph replacement rules.

An example of the textual input for the T7 elongation reaction is shown below:

@T7-Elongation
#  1st virtual reactant
X  2 1 01111101 0000000 $
Y  2 1 01111010 0000000
Y’ 2 2 01111001 0000000
X’ 2 1 01111010 0000000 $
X1 1 2 01011001 0000000
# 2nd virtual reactant
NULL

# virtual product
Y  2 1 01111111 0000000 $
X  2 0 01111111 0000000
X’ 2 2 01111111 0000000
Y’ 2 0 01111111 0000000 $
Y1 1 2 00110111 0000000
X1 1 0 01111111 0000000

Format: label [sequence] type nbond match compare [enzyme symbol]
   type [1=RNA, 2=DNA]
   nbond [0=5’, 1=3’, 2=Hybrid]
   match, compare (mask: enz, rev, type, seq, lab, hybrid, next, prev)
   for match: [1=don’t care, 0=match], for  compare: [1=neq, 0=eq]  

This reaction scheme has been used as the basis for deriving experimental coupled
amplification schemes capable of novel evolutionary behaviour. As a practical
example of the utility of the present approach we have calculated the complete
spectrum of reactions starting with the templates and primers for the CATCH system
[10] involving the bi-molecular step of template-template hybridisation. The
molecules produced from the iterated application of the 3 enzyme reactions and
hybridisation are shown in fig. 8.



114         J.S. McCaskill and U. Niemann

Fig. 8. Coupled amplification of the CATCH
scheme with side reactions found by the
program MOLGRAPH.
This scheme is the result of an application of
the above molecular graph replacement
chemistry to the CATCH reaction.
Hy = hybridisation, Pr = primer
hybridisation, RT = reverse transcriptase, RH
= RNAse H, thin lines RNA, thick lines
DNA. The thin vertical lines represent base-
pairing bonds. The several vertices forming
chains of oligonucleotides in the single
stranded DNA and RNA are not shown
explicitly. The RNA starting species for
example were P1’-Pr1-Sp1-Hy and P2’-Pr2-Sp2-
Hy’.

7.   Outlook

We have demonstrated two novel capabilities in this work. Firstly, a formalisation of
the structural chemistry of DNA processing (and other informational macromolecules)
can be constructed, allowing the investigation of combinatorial networks of catalysed
reactions in an automated fashion. A suitable level of abstraction has been employed
to this end. Secondly, biochemists can specify known enzymatic reactions succinctly
in terms of their local processing effects and have now a tool for the investigation of
the consequences of the concerted action of DNA/RNA processing enzymes. This may
be important for the entire field of molecular biology, but especially for an
exploitation of its applications to DNA computing [11].

At present the program computes all possible derivation paths as long as new
molecules are formed. Some DNA computations will also require a more
synchronously clocked treatment for a finite number of iterations, which is readily
implemented. The recognition of catalytic cycles must consider not only the
production of products previously used as reactants in the course of a reaction path (or
derivation), but also the consumption of these reactants. A simple interconversion
cycle such as A B A is not replication. Such analysis will require the storage of entire
derivation trees. The analysis of the reaction graphs created by the molecular graph
chemistry constructed in this work must form the subject of a separate investigation.
The logical identification of self-amplification cycles for example is one application.

The application to DNA Computing and molecular self-organisation involves a search
for minimal basis sets of local reactions which can both assemble complex sets of
molecular graphs from simple starting molecules, and organise the catalytic cycles to
concentrate the products in particular families. A complete analysis of this requires
both structural and kinetic considerations.  Since the specification of the local
reactions is quite simple, however, we expect a combinatorial search of the molecular

Pr Pr

RT RT

RH RH

Hy Hy
RH RH

RT

Hy Hy

Hy Hy

Hy Hy
Hy Hy

RT RT

Hy Hy

Pr

T7 T7



Graph Replacement Chemistry for DNA Processing         115

graph families produced by simple sets of local reaction rules to be informative and
within the reach of the tools developed here. This will be the subject of future work.

In contrast with more formal approaches such as [4], the present work allows a direct
relation between abstract structural computations and real chemistry. The example of
the 3SR reaction illustrates both the problems and potential of DNA computations
involving structural complexes of DNA: the rich array of side reactions for
enzymatically defined processes can lead to combinatorially complex libraries even
for comparatively simple reactions. Although at present the theory is applied to
combinatorial reactions on nucleic acids, it can be readily extended to other classes of
informational molecules. The use of local variable graph replacement rules to allow
the user to specify reaction classes succinctly and then explore the product space may
find general application in DNA processor design and error analysis. The next more
detailed level would involve reaction prediction programs in organic synthesis [12],
which is currently not tractable for DNA, but there are some grounds for optimism
that a wide range of combinatorial reaction families can be handled iteratively at this
level.

Acknowledgements: The financial support of the German Ministry (BMBF Gr.
#0310799) during an early phase of this work is gratefully acknowledged. The authors
wish to thank R. Ehricht and T. Ellinger for discussions concerning the application to
the 3SR reaction and U. Tangen, J. Ackermann and T. Rücker for correcting the final
manuscript.

References

[1] Thue, A.: Probleme über Veränderungen von Zeichenreihen nach gegeben
Regeln, Skr. Vid. Kristianaia, I. Mat. Naturv. Klasse 10 (1914) 34pp.

[2] Rozenberg, G. ED. : Handbook of graph grammars and computing by graph
transformation. (World Scientific, Sing.-NJ-London-Hong Kong, 1997).

[3] Narendran, P. and Rusinowitch, M. ED.: Rewriting Techniques and Applications. LNCS
1631 (Springer, Berlin 1999).

[4] Fontana, W.: Algorithmic Chemistry. Technical Report LA-UR 90-1959, Los Alamos
Natl. Lab. (1990).

[5] König, Denes: Theorie der endlichen und unendlichen Graphen (Teubner, Leipzig 1986).
[6] Nagl, Manfred: Bibliography on Graph Rewriting Systems (Graph Grammars, 1983).
[7] Ehrig, Harmut: Tutorial introduction to the algebraic approach of graph grammars. -

LNCS 291 3-14 (Springer, Berlin 1987).
[8] Schürr, A.: Programmed graph replacement systems, pp479-546 in Rozenberg, G. ED.

Handbook of graph grammars and computing by graph transformation. (World
Scientific, Sing-NJ-London-Hong Kong, 1997).



116         J.S. McCaskill and U. Niemann

                                                                                                                                          
[9] Fahy, E., Kwoh, D.Y. and Gingeras, T.R: Self-sustained sequence replication (3SR): an

isothermal transcription-based amplification system alternative to PCR.  In "PCR
Methods and Applications" pp25-33 (Cold Spring Harbor Lab. Press: NY, 1991).

[10] Ehricht, R., Ellinger T., and McCaskill, J.S.: Co-operative amplification of templates by
cross hybridisation (CATCH). Europ. J. Biochem. 243 358-364 (1997).

[11] Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science
266 1021-1023 (1994).

[12] Ihlenfeldt, W. and Gasteiger, J.: Computer-assisted planning of organic synthesis: the
second generation of programs. Angew. Chem. Int. Ed. Engl. 34 2613-2633 (1995).



DNA and Circular Splicing?

Paola Bonizzoni1, Clelia De Felice2, Giancarlo Mauri1, and Rosalba Zizza1??

1 Dipartimento di Informatica Sistemistica e Comunicazione
Università degli Studi di Milano - Bicocca

Via Bicocca degli Arcimboldi 8, 20126 Milano - Italy
{bonizzoni, mauri}@disco.unimib.it

rosziz@bioinformatics.bio.disco.unimib.it
2 Dipartimento di Informatica ed Applicazioni,

Università di Salerno, 84081 Baronissi (SA), Italy
defelice@unisa.it

Abstract. Circular splicing has been very recently introduced to model
a specific recombinant behaviour of circular DNA, carrying on the inves-
tigation initiated with linear splicing. In this paper we restrict ourselves
to the relationship between circular regular languages and circular splic-
ing languages. We provide partial results towards a characterization of
the class of circular regular languages generated by finite circular splicing
systems. We consider a class of languages X∗ closed under conjugacy re-
lation and with X a regular languages, called here star languages. Using
automata theory and combinatorial techniques on words, we show that
for a subclass of star languages the corresponding circular languages are
circular (Paun) splicing languages. In particular, star languages with X
being a finite set or X∗ being a free monoid belong to this subclass.

1 Introduction

The notion of splicing systems was firstly introduced in [11], where T. Head
modelled a recombinant behaviour of DNA molecules (under the action of re-
striction and ligase enzymes) as a particular operation between words in a formal
language and so suggesting the possibility of using molecules to perform com-
putations. Since then, the way from DNA Recombination to DNA Computing
via formal languages has been largely explored for both theoretical and tech-
nological implications. In this context, the splicing operation has been used to
model specific recombinant behaviours. In short, a restriction enzyme is able
to recognize a pattern in a DNA molecule and to cut this molecule inside the
pattern in a specific position, so providing two segments of DNA. Then a ligase
enzyme binds together pairs of sequences coming from different molecules, so
generating a new molecule. In order to treat this cut and paste phenomenon in
? Partially supported by MURST Project “Unconventional Computational Models:

Syntactic and Combinatorial Methods” - “Modelli di calcolo innovativi: Metodi sin-
tattici e combinatori”.

?? E-mail address for correspondence: rosziz@bioinformatics.bio.disco.unimib.it

A. Condon (Ed.): DNA 2000, LNCS 2054, pp. 117–129, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



118 P. Bonizzoni et al.

formal language theory, an initial set of strings (the initial set of DNA molecules)
and a set of splicing rules or special words (simulators of enzymes behaviour)
are given, such that the set of all possible molecules generated by the biochem-
ical process of cut and paste is nothing but the language of all possible words
that may be generated by applying the rules to the strings. We do not take into
account the bidimensional nature of DNA even if very recently a link has been
given between splicing systems and picture languages (see [10] for a survey on
picture languages). We also deliberately ignore other molecular considerations
and basic details (for a complete monograph see [17]).

DNA occurs in both linear and circular form and, correspondingly, linear and
circular splicing systems have been defined. The introduction of circular splicing
rules may be justified as follows: an example of this type of splicing occurs in a
recombinant mechanism (transposition) between bacteria and plasmides. More-
over, the replication is possible only if DNA has a circular form in the host cell.
Furthermore, it could be interesting to use circular DNA in Adleman’s experi-
ment, since plasmides autoreplicate themselves without errors and exponential
weight increasing, which are weak points in Adleman’s approach [1]. In this pa-
per we mainly deal with circular splicing systems, providing interesting links
with the linear case, which has been deeply investigated. Furthermore, in our
theoretical model there is no hypothesis on the number of copies of the initial
set of molecules.

Classical results in formal language theory and combinatorial tools have been
of great use for reaching the results given in this paper. It is well known that three
definitions of (linear) splicing systems are given by Head, Paun and Pixton. The
computational power of these systems, i.e. the class of languages which are gener-
ated by them, has been completely described. This computational power depends
on which level in the Chomsky hierarchy the initial set I and the set of the rules
R belong to. In particular, if the last two sets are finite, the splicing-generated
languages are a subclass of the regular languages, completely characterized in [4].
We now state some results towards the proof of a counterpart of this character-
ization for circular splicing. Precisely, three corresponding definitions of circular
splicing operations have been given (by Head, Paun and Pixton). We show that
under an additional hypothesis, for a star language (i.e. a language X∗ closed
under conjugacy relation and with X a regular language), the corresponding
circular language is generated by a circular Paun splicing system with a finite
initial set I and a finite set R of rules (Theorem 1). Furthermore, this result
finds a deeper insight in the framework of the theory of variable-length codes
[2]. Indeed, we prove that for all star languages X∗ with X being a finite set or X
being a rational code, the corresponding circular languages are circular splicing
languages (Proposition 5 and Corollary 1). Observe that in contrast with the
linear case, a finite initial set and a finite set of rules do not guarantee that the
splicing-generated language is regular.

Let us briefly sketch the contents of this paper. In Section 2 we gathered an
overview on linear splicing and easy new and known results on circular splicing.
In the same section, we also explicitly observe that the computational power of



DNA and Circular Splicing 119

the three circular splicing systems is already known to be different. As far as
we know, very few results on circular splicing systems are known, and these are
surveyed in Sections 2, 4. For the sake of completeness, in the same Section 4
we reported several additional hypotheses which could or could not be added
to circular splicing systems. Some questions are also asked. In our results, pre-
sented in Section 3, we restrict ourselves to Paun’s definition with no additional
hypotheses. All the proofs which are not contained in this paper may be found
in an extended version of the paper [5].

2 Languages and Splicing: Definitions

In the next part of this paper, we denote by A∗ the free monoid over a finite
alphabet A. We also set A+ = A∗ \ 1, where 1 is the empty word.

2.1 Linear Splicing

In this paper we only deal with circular splicing, but for completeness, let us
briefly sketch some concepts and results on linear splicing. Literature presents
three definitions of the linear splicing operation [11,16,18]. One of them has
been introduced by Paun, where the biological process presented in Section 1
has been formalized as follows [16]. The enzymes are encoded by a splicing
rule r = u1|u2$u3|u4, for ui ∈ A∗ and |, $ 6∈ A; the molecules are sequences
w′, w′′ ∈ A∗. If w′ = x1u1u2x2 and w′′ = y1u3u4y2, the rule r can be applied to
w′ and w′′, producing two new sequences w = x1u1u4y2 and z = y1u3u2x2. A
splicing system S consists of a set R of rules (enzymes) and an initial language
I ⊆ A∗ (molecules). The global recombinant behaviour of DNA molecules is
described by the splicing language L(S) generated by S. L(S) is the smallest
set of strings s.t. I ⊆ L(S) and if w′, w′′ are in L(S) and r is a rule that can
be applied to w′ and w′′, producing w, z, then w and z must also be in L(S).
Let us denote H(F1, F2) the class of languages generated by splicing systems
S = (I, R), where I ∈ F1, R ∈ F2 and F1, F2 are classes of languages. It is
known that splicing systems can reach the same power of Turing Machines [16,
12]. As we have already said, when we restrict ourselves to splicing systems with
a finite set R of rules and a finite set I of strings, we get a class H(Fin, F in)
which is a proper subclass of regular languages, as shown in [8,9,14,18]. Despite
the interesting results obtained in this framework, no algorithm was yet known
for deciding whether a regular language is generated by splicing. In [4] the first
decision procedure to test whether a regular language can be generated by the
splicing operation is given, deriving a complementary procedure to the ones
proposed in [8,9,14,18]. A very interesting consequence of this result is that this
procedure allows us to compare the generative power of different splicing systems.
Indeed, in [7] the authors point out that there is a regular language generated by
Paun’s (resp. Pixton’s) splicing operation that cannot be generated by Head’s
(resp. Paun’s) splicing operation.



120 P. Bonizzoni et al.

2.2 Circular Languages

Circular words have already been examined in formal language theory. Indeed,
for a given word w ∈ A∗, a circular word ∼w is the equivalence class of w w.r.t.
the conjugacy relation ∼ defined by xy ∼ yx, for x, y ∈ A∗ (see [15]). A∼ is
the set of all such circular words over A, i.e. the quotient of A∗ w.r.t. ∼. Given
L ⊆ A∗, Cir(L) = {∼w|w ∈ L} is the circularization of L, i.e. the set of all
circular words corresponding to elements of L, while any language L such that
Cir(L) = C, for a given circular language C ⊆ A∼, is called a linearization of C.
The set of all strings in A∗ corresponding to elements of C is the full linearization
of C, written Lin(C). Circular splicing deals with circular strings and circular
languages and as a result with formal languages which are full linearizations of
circular languages. This latter representation will be used in the next part of this
paper, where we will consider languages closed under conjugacy and the action
of circular splicing over their circularization. We denote Fin (resp. Reg, CF ) the
class of finite (resp. regular, context free) languages. Given a family of languages
FA in Chomsky hierarchy, FA∼ consists of all those circular languages C which
have some linearization in FA. In particular, C ∈ Reg∼ if and only if its full
linearization is regular [13,18,20]. In this paper we mainly deal with Reg∼.

2.3 Circular Splicing

The splicing operation in the circular case deals with biological phenomena which
are different from the ones modelled in the linear case, but the three definitions
given for linear splicing systems can be adapted to the circular case.

Head’s definition [20]. A circular (Head) splicing system is a 4-tuple
SCH = (A, I, T, P ), where I ⊆ A∼ is the initial circular language, T ⊆ A∗ ×
A∗ × A∗ and P is a binary relation on T , such that, if p, x, q, u, y, v ∈ A∗,
(p, x, q),(u, y, v) ∈ T and (p, x, q)P (u, y, v) then x = y. Thus, given ∼hpxq,
∼kuxv ∈ A∼ with (p, x, q)P (u, x, v), the splicing produces ∼hpxvkuxq.

Paun’s definition [16]. A circular (Paun) splicing system is a 3-tuple
SCPA = (A, I, R), where I ⊆ A∼ is the initial circular language, R ⊆ A∗|A∗

$A∗|A∗, with |, $ 6∈ A, is the set of rules. Then, given a rule r = u1|u2$u3|u4
and two circular words ∼hu1u2,

∼ ku3u4, the rule cuts and linearizes the two
strings obtaining u2hu1 and u4ku3, and pastes and circularizes them obtaining
∼u2hu1u4ku3.

Pixton’s definition [18]. A circular (Pixton) splicing system is a 3-tuple
SCPI = (A, I, R) where A is a finite alphabet, I ⊆ A∼ is the initial circular
language, R ⊆ A∗ ×A∗ ×A∗ is the set of rules. R is s.t. if r = (α, α′; β) ∈ R then
r = (α′, α; β′) ∈ R. Thus, given two circular words ∼αh,∼ α′k, the two rules r, r
cut and linearize the two strings, obtaining hα, kα′, and then paste, substitute
and circularize them, producing ∼hβkβ′.

Remark 1. We must note that in the original definition of circular splicing lan-
guage given by Paun in [12], rules in R can be used in two different ways: one
way has been described above, the other, called self-splicing, will be defined in



DNA and Circular Splicing 121

Section 4. In this paper in order to make the three definitions uniform, we have
preferred to delete self-splicing from Paun’s definition.

We now give the definition of circular splicing languages. For a given splicing
system SCX , with X ∈ {H, PA, PI}, we denote (w′, w′′)`rw the fact that w
is produced from (or spliced by) w′, w′′ by using a rule r. Given a language
C ⊆ A∼, we denote σ(C) = {z ∈ A∼ | (w′, w′′)`r z, for w′, w′′ ∈ C and r ∈ R}.
Thus, we define σ0(C) = C, σi+1(C) = σi(C) ∪ σ(σi(C)), i ≥ 0, and then
σ∗(C) =

⋃
i≥0 σi(C).

Definition 1. Given a splicing system SCX , with X ∈ {H, PA, PI}, the circu-
lar language C(SCX) = σ∗(I) is the language generated by the system SCX , I
being the initial language in SCX .
A circular language C is CX generated (or C is a circular splicing language) if
a splicing system SCX exists such that C = C(SCX).

2.4 On the Generating Power of Circular Splicing Systems

In this paper we deal with Paun’s systems SCPA = (A, I, R), with both I, R
finite sets, and with the corresponding class of generated languages, denoted
C(Fin, F in). As a matter of fact, the investigation about circular splicing sys-
tems is usually limited to ones with a finite or regular initial language. Further-
more, it goes without saying that the set of rules is finite in each definition.

Example 1. In [20] it is shown that (aa)∗ is not a linear splicing language,
while the corresponding circular language {∼(aa)n|n ≥ 0} is CH generated
by SCH = (A, I, T, P ) with A = {a}, I = {∼1,∼ aa}, T = {(1, a, 1)}, and
(1, a, 1)P (1, a, 1). We can observe that {∼(aa)n|n ≥ 0} is CPA generated, by
choosing A = {a}, I = {∼aa}, R = {aa|1$1|aa}. On the contrary, let us consider
the regular language (aa)∗b. Using results in [4], we get (aa)∗b ∈ H(Fin, F in).
Take its circularization C =∼ (aa)∗b. Notice that there is a linearization of
C, {akbak : k ∈ IN} which is not regular. However, the full linearization is
(aa)∗{b, aba}(aa)∗, which is regular and given in [18]. Thus C ∈ Reg∼, in virtue
of the definition [18,20]. We immediately see that C cannot be CH or CPA gen-
erated (Proposition 2). Nevertheless, it is not too difficult to prove that C is CPI
generated, when we choose, for example, A = {a, b}, I = {∼b,∼ a2b,∼ a4b}, R =
{(a2, a2b; a2), (a2b, a2; 1)}.

The previous example shows the difference between linear and circular splic-
ings. The same example also suggests the problem, formalized below, of com-
paring the computational power of the three definitions of the circular splicing
operation given in Section 2.3.

Problem 1. Given C = C(SCX), with X ∈ {H, PA, PI}, does SCY exist, with
Y 6= X, Y ∈ {H, PA, PI}, such that C = C(SCY )?

It is not too difficult to prove Proposition 1. This proposition and Example
1 show that the computational power of Pixton’s systems is greater than the
other two. This gives a partial answer to Problem 1.



122 P. Bonizzoni et al.

Proposition 1. If C ⊆ A∼ is CH generated, then C is CPA generated. More-
over, if C ⊆ A∼ is CPA generated, then C is CPI generated.

Proposition 2, quoted in Example 1, allows us to state that some circular
languages are not generated by Head’s or Paun’s systems.

Proposition 2. Let L = Lin(C) be an infinite language which is the full lin-
earization of a circular language C. Suppose that L satisfies the following con-
dition

∀l, m ∈ L : lm /∈ L.

Then Cir(L) is not CPA generated.

Example 2. By using Proposition 2, we can easily state that some circular regular
languages cannot be generated by circular Paun’s splicing systems. For instance,
let L1 = {w ∈ A∗ | ∃h, k ∈ IN |w|a = 2k, |w|b = 2h} and L2 = {w ∈ A∗ | ∃h, k ∈
IN |w|a = 2k+1, |w|b = 2h+1}. L1 and L2 are languages closed under conjugacy.
Moreover, L1 and L2 are regular languages (L1 is the shuffle of (aa)∗ and (bb)∗,
L2 is the shuffle of (aa)∗a and (bb)∗b). Thus, Cir(L1) and Cir(L2) are circular
regular languages. By using Proposition 2, we can see that Cir(L2) is not CH
or CPA generated. On the contrary, we will see in Section 3 that Cir(L1) is
CPA generated.

3 Regular CPA Generated Languages and Star Languages

It is already known that in contrast with the linear case, C(Fin, F in) is not
intermediate between two classes of languages (in the Chomsky hierarchy). For
example, ∼anbn is a circular context-free language which is not a circular regular
language (since it has no regular linearization), but ∼anbn is CH generated with
finite initial circular language [20]. On the other hand, we have already seen
examples of regular circular languages that cannot be generated by using CPA
splicing systems with finite initial circular language (see Example 1). So far,
we have not yet discovered whether C(Fin, F in) contains any context-sensitive
or recursive enumerable language which is not context-free. We believe that
C(Fin, F in) ⊆ NP . Nevertheless, in this paper we restrict ourselves to the
following problem.

Problem 2. Characterize Reg∼ ∩ C(Fin, F in).

We approach Problem 2 by dealing with the class of languages defined below.

Definition 2. A star language is a language L ⊆ A∗ that satisfies the following
conditions:

(1) L = X∗, with X a regular language,
(2) L is closed under conjugacy relation.

Under an additional hypothesis, a star language has its circularization in
C(Fin, F in), as shown in Theorem 1, whose proof can be obtained thanks to
the following proposition.



DNA and Circular Splicing 123

Proposition 3. Let X∗ be a star language and let SCPA = (A, I, R) be a splic-
ing system. If I ⊆ Cir(X∗) then C(SCPA) ⊆ Cir(X∗).

Proof. Let us prove that C(SCPA) ⊆ Cir(X∗) holds, by using induction over
the length |y| of ∼y ∈ C(SCPA). If ∼y ∈ I then ∼y ∈ Cir(X∗), since
I ⊆ Cir(X∗). Otherwise, y′ ∈∼ y exists such that y′ = u2hu1u4ku3 with
∼u2hu1,

∼ u4ku3 ∈ C(SCPA) and ∼u2hu1 6=∼ y, ∼u4ku3 6=∼ y. Then |u2hu1| <
|y|, |u4ku3| < |y|. By induction hypothesis, ∼u2hu1,

∼ u4ku3 ∈ Cir(X∗) and, X∗

being closed under conjugacy, u2hu1, u4ku3 ∈ X∗. Thus, X∗ being a submonoid,
u2hu1u4ku3 = y′ ∈ X∗, and so ∼y ∈ Cir(X∗). ut

In Theorem 1, for a star language X∗ satisfying an additional hypothesis,
we state how Cir(X∗) is CPA generated (with I, R finite sets). We also use
the following notations and we suppose the reader is familiar with elementary
finite state automaton theory (see [2,13]). Let A = (A, Q, δ, i, F ) be a finite state
automaton. A is trim if each state is accessible and coaccessible. A word c ∈ A+

is a cycle (resp. simple cycle) in A if q ∈ Q exists such that δ(q, c) = q and the
internal states crossed by the transition are different from q (resp. each other and
w.r.t. q). Given a regular language L and a finite state automaton A recognizing
L, we inductively define the fingerprint Fnc

(c) of a cycle c in A and the class of
fingerprint closed languages L w.r.t. A.

Definition 3 (Fingerprint of a cycle). Let A be a finite state automaton
recognizing a regular language L, i.e. L = L(A). The set C(L) =

⋃
c cycle Fnc

(c)
of the fingerprints Fnc(c) for any cycle c in A is defined inductively as follows:

– if c is simple, then Fnc(c) = {cnc}, for minimal nc > 0 s.t. cnc ∈ L, otherwise
Fnc(c) = ∅;

– if c is not simple, i.e. c = u1c
p1
1 u2c

p2
2 · · ·ukcpk

k uk+1, where ui are labels of
transitions in which no state is crossed twice, u1, uk+1 6= 1, ci are cycles,
pi ≥ 1, Fnc1

(c1), · · · , Fnck
(ck) are nonempty fingerprints of c1, . . . , ck, then

Fnc
(c) = {(u1x

t1
1 u2x

t2
2 · · ·ukxtk

k uk+1)nc |xi s.t. x
nci
i ∈ Fnci

(ci), 0 ≤ ti ≤
nci

, i = 1, . . . , k}, for minimal nc > 0 such that Fnc
(c) ⊆ L, otherwise

Fnc
(c) = ∅.

Let c be a not simple cycle. Observe that Fnc(c) = ∅ if either there exists j
s.t. Fncj

(cj) = ∅, or there exist x
nci
i ∈ Fnci

(ci), 0 ≤ ti ≤ nci
, i = 1, . . . , k s.t.

(u1x
t1
1 u2x

t2
2 · · ·ukxtk

k uk+1)∗ ∩ L = ∅.
For a given finite state automaton A, we say that L = L(A) is a fingerprint

closed language w.r.t. A, whenever Fnc(c) 6= ∅, for any cycle c in A. Loosely
speaking, if L is a fingerprint closed language we are sure that for any label of
closed path we have a finite crossing of this label in L.

Thus we can prove our main result.

Theorem 1. Let X∗ be a fingerprint closed star language w.r.t. a trim deter-
ministic automaton A recognizing X∗. Then Cir(X∗) ∈ C(Fin, F in).



124 P. Bonizzoni et al.

Sketch of the proof. Let us consider SCPA = (A, I, R) where I and R are finite
sets defined by means of C(L). Precisely, we define I1 as the set containing C(L),
along with the labels of the successful paths in A in which each cycle c is crossed
at most nc times: I1 = {w ∈ A∗ | δ(i, w) ∈ F and ∀x, z ∈ A∗, c ∈ A+, q ∈ Q if
w = xαkz with δ(i, x) = q, δ(q, c) = q, α s.t. αnc ∈ Fnc

(c), then k ≤ nc}∪ C(L).
Let I = Cir(I1). Note that I1 is finite and I = Cir(I1) ⊆ Cir(X∗). Furthermore,
we set R = {1|1$1|α; α ∈ Fnc

(c), Fnc
(c) ⊆ C(L), c cycle}.

Let us denote C = C(SCPA) and let us prove that C = Cir(X∗).
We will firstly show that Cir(X∗) ⊆ C. Let ∼y ∈ Cir(X∗). By induction on

|y|, we prove that ∼y ∈ C, i.e. ∼y is generated by the splicing system given above.
By definition, y is the label of a successful path: if ∼y does not contain cyles or
each cycle c is crossed at most nc times (for nc the one given in the definition of
I1), then, by construction of I, ∼y ∈ I, and so ∼y ∈ C (by definition). Otherwise,
each element y ∈∼ y is a successful path in which a cycle c is crossed more than
nc times (for nc the one given in the definition of I1). Precisely, y = xcrz with
x, z ∈ A∗, δ(i, x) = q, δ(q, c) = q, δ(q, z) ∈ F and r > nc, i.e., r − nc > 0.
Choose x with |x| maximal w.r.t. this condition. Since y is a successful path,
then y′ = xcr−ncz is a successful path and, by induction hypothesis, ∼y′ ∈ C.

We claim that cnc ∈ C(L), where we refer to the occurence of the word
c as the cycle c in the successful path y. This allows us to prove that ∼y ∈
Cir(X∗). Indeed, if cnc ∈ C(L), then ∼cnc ∈ I. By splicing definition, ∼cnc ∈
C. Consider the linearization zxcr of ∼y. Set zxcr = u2hu1u4ku3, with h =
zxcr−nc , u1 = u2 = k = u3 = 1, u4 = cnc . Clearly, u1|u2$u3|u4 = 1|1$1|cnc ∈
R. Moreover, ∼u2hu1 =∼ zxcr−nc ∈ C and ∼u4ku3 =∼ cnc ∈ C: by splicing
definition ∼zxcr =∼ y ∈ C.

We now prove the above stated claim: cnc ∈ C(L). Otherwise, by Definition
3, c is not a simple cycle in y and cnc is not a fingerprint of the cycle c in y. Then
c = u(c′)tv, where c′ is a cycle in y, t > nc′ and u, v 6= 1. Thus y = x(u(c′)tv)rz
with |xu| > |x|, against the maximality of |x|.

Vice versa, C ⊆ Cir(X∗) follows by using Proposition 3, since I ⊆ Cir(X∗),
i.e. C = Cir(X∗). ut

Example 3. Star languages exist which do not satisfy the hypothesis contained
in Theorem 1. For instance, consider L = A∗ \ a∗ = (a∗ba∗)∗ over a two-letter
alphabet A = {a, b}. It is clear that L is a star language. Furthermore, a trim
deterministic automaton A exists such that a is a cycle in A and a∗ ∩ L = ∅.
However, L is not CPA generated. Indeed, by contradiction suppose that C =
Cir(L) = C(SCPA) with SCPA = (A, I, R). Since ∼(a∗b) ⊆ C, n ∈ IN exists
such that w =∼ (anb) ∈ C \ I. Thus, ∼hu1u2 ∈ C, ∼ku3u4 ∈ C also exist such
that w =∼ u2hu1u4ku3. Since we have only one occurrence of b’s in w, we get
∼hu1u2 ∈∼ (a∗) or ∼ku3u4 ∈∼ (a∗), a contradiction.

As far as we know, the structure of the regular languages which are closed
under the conjugacy relation is unknown, even if we restrict ourselves to the
simple case of languages which are the Kleene closure of a regular language.
Nevertheless, this structure has been completely described in [3,19] when X∗ is



DNA and Circular Splicing 125

a free monoid. The necessary definitions for recalling this result can be found in
[2]. We briefly report them below.

An algebraic description of some subclasses of the class of the regular lan-
guages L ⊆ A∗ has been given by means of the syntactic monoid M(L) of L.
This is the quotient of A∗ w.r.t. the syntactic congruence ≡L, defined as follows:
w ≡L w′, with w, w′ ∈ A∗, if and only if xwy ∈ L ⇔ xw′y ∈ L, for all x, y ∈ A∗.
If L is regular, a well known result states that M(L) is a finite monoid.

Historically, this notion arose in the context of variable-length codes. We
recall that X∗ is a free monoid if and only if X is a code, i.e. for all x1, . . . , xn,
x′

1, . . . , x
′
m ∈ X, we have

x1 · · ·xn = x′
1 · · ·x′

m ⇔ n = m and ∀i ∈ {1, . . . , n} xi = x′
i

A remarkable class of codes is the class of biprefix codes C. C ⊆ A∗ is biprefix if
no word in C is a proper prefix or a proper suffix of another element in C, i.e.
C ∩ CA+ = C ∩ A+C = ∅. For instance, uniform codes Ad, d ≥ 1, are biprefix
codes.

Here we report two known results on codes. Theorem 2 has been used to
prove Proposition 4. Theorem 3 completely describes finite group codes.

Theorem 2. [3,19] Let X ⊆ A+ be a code. Then X∗ is closed under conjugacy
relation if and only if M(X∗) is a group.

We explicitly note that, under the hypothesis that X is a regular language,
M(X∗) is a group if and only if X is a group code, i.e. a group G and a surjective
morphism φ: A∗ → G exist such that X∗ = φ−1(H), H being a subgroup of G.
Group codes are biprefix codes.

Theorem 3. [3,19] Let X ⊆ A+ be a group code. X is finite if and only if
X = Ad, d ≥ 1.

Example 4. [2] Group codes exist which are not finite. Let A = {a, b} and Ma =
(b∗(ab∗a)∗)∗ be the set of words with an even number of a. Ma is generated by
Xa = b ∪ ab∗a, which is a (biprefix) code. Then Ma = X∗

a is a free monoid.
Moreover, Xa is a regular group code, being X∗

a = φ−1(0), where φ: A∗ →
ZZ/2ZZ is the morphism given by φ(a) = 1, φ(b) = 0 and with {0} a subgroup of
ZZ/2ZZ (w.r.t. +). Observe that for the submonoid X∗ = {w ∈ A∗||w|a = |w|b}
composed of the words in A∗ having as many a’s as b’s, we have X∗ = φ−1(0)
where φ: A∗ → ZZ is such that φ(a) = 1, φ(b) = −1, and with {0} a subgroup
of ZZ (w.r.t. +). X is called a Dyck code over A and it is a (non regular) group
code.

Example 2 (continued). Consider L1 = {w ∈ A∗ | ∃h, k ∈ IN |w|a = 2k, |w|b =
2h}. Obviously, L1 = Ma ∩ Mb. Thus L1 is a free monoid which is closed under
conjugacy, since it is the intersection of two free monoids both closed under
conjugacy. We have already observed that L1 is a regular language. Furthermore,
since L1 is a free monoid, it follows that L1 = X∗, where X is a code [2].



126 P. Bonizzoni et al.

Moreover, it is well known that when X is a code, X∗ is regular if and only if
X is regular [2]. Since X is a code which is regular and X∗ = L1 is closed under
conjugacy relation, by Theorem 2 we have that X is a group code. Consequently,
L1 = X∗ is a star language and Cir(L1) = Cir(X∗) is CPA generated, thanks
to Corollary 1. A splicing system generating Cir(L1) is SCPA = (A, I, R) with
I = {∼aa,∼ bb,∼ aabb,∼ abab} ∪ 1 and R = {a|1$1|a, b|1$1|b, a|1$1|b}.

Remark 2. We can observe that each regular language closed under conjugacy
is contained in a star language generated by a regular group code which is
minimal w.r.t. inclusion. Indeed, let L be a regular language which is closed
under conjugacy. A∗ is a free monoid containing L, which is regular and closed
under conjugacy. Thus, the intersection of all regular free monoids containing L
which are closed under conjugacy is a free monoid containing L, closed under
conjugacy (thus generated by a regular group code) and minimal w.r.t. inclusion.

Finally, Proposition 4 shows that the hypothesis contained in Theorem 1 is
satisfied by regular group codes.

Proposition 4. Let X be a regular group code and let A be a trim deterministic
finite state automaton recognizing X∗. For any cycle c in A, c ∈ X∗.

Proof. Let X be a regular group code and let A be a trim deterministic finite
state automaton recognizing X∗. Let c be a cycle in A. Then, x, y ∈ A∗ exist
such that xcy ∈ X∗ and xy ∈ X∗. Moreover, yxc, yx ∈ X∗, being X∗ closed
under conjugacy, and c ∈ X∗, since X∗ is biunitary. We recall that X is a
biprefix code if and only if X∗ is biunitary, i.e. X∗ is both left and right unitary,
a submonoid X∗ being right (resp. left) unitary if, for all u, v ∈ A∗, u, uv ∈ X∗

(resp. u, vu ∈ X∗) implies v ∈ X∗ [2]. ut

Corollary 1. For each regular group code X, Cir(X∗) is a circular splicing
language.

As we have already said, we prove that all star languages X∗ with X a finite
set have their circularization in C(Fin, F in). In the proof of this result, we also
give a splicing system generating Cir(X∗) whose construction is simpler than
the one given in the proof of Theorem 1.

Proposition 5. For each finite set X, Cir(X∗) is a circular splicing language.

Proof. It is clear that the splicing system SCPA = (A, I, R) generates Cir(X∗),
when we choose I = {∼x | x ∈ X} ∪ 1 and R = {xi|1$1|xj | xi, xj ∈ X}.

4 Conclusions and Future Work

As we have already said in Section 1, additional hypotheses can be added to
the definitions of circular splicing given by Paun and Pixton. In this section we
report the result already obtained which uses the hypotheses recalled below.

Hypothesis 1. R is a symmetric scheme, i.e. for any rule r = u1|u2$u3|u4
(resp. r = (α, α′; β)) in a splicing system SCPA (resp. SCPI) there is the rule
r = u3|u4$u1|u2 (resp. r = (α′, α; β′)).



DNA and Circular Splicing 127

Remark 3. Any set R of rules in a splicing system SCPI is implicitly supposed
to be symmetric.

Hypothesis 2. R is a reflexive scheme, i.e. for any rule u1|u2$u3|u4 (resp.
(α, α′; β)) in a splicing system SCPA (resp. SCPI) there is the rule u1|u2$u1|u2
(resp. (α, α; α)).

Hypothesis 3. Self-splicing. Self-splicing is defined in a splicing system
SCPA (resp. SCPI) producing ∼u4xu1 and ∼u2yu3 from ∼xu1u2yu3u4 and the
rule u1|u2$u3|u4 (resp. ∼βε′,∼ β′ε starting from ∼αεα′ε′ and r, r as above).

Problem 3 generalizes Problem 2 when we take into account the additional
hypotheses given above.

Problem 3. Can we characterize F ∩ C(Fin, F in) (resp. F ∩ C(Reg, F in)) for
each class F of languages in the Chomsky hierarchy, for every definition of
C(Fin, F in) (resp. C(Reg, F in)) and for every possible combination of the three
hypotheses above?

Below we report a known result which uses Pixton’s systems with hypotheses
1, 2 and which generalizes a similar theorem proved for linear splicing [18].

Theorem 4. [18] Let SCPI = (A, I, R) be a circular splicing system with I a
circular regular language and R reflexive and symmetric. Then C = C(SCPI) is
regular.

We conclude this section with some remarks related to Problem 2, i.e. the
characterization of the circular regular languages generated by finite circular
splicing, and with some problems which are still open.

First of all, we point out that rational languages exist which are not star
languages and which are the full linearization of regular circular splicing lan-
guages. Indeed, ∼(ab)∗ has (ab)∗ ∪ (ba)∗ as full linearization, and this is not a
star language, but it is generated by SCPA = (A, I, R), where A = {a, b}, I =
{∼ab}, R = {ab|1$1|ab}.

Secondly, note that the class of regular languages closed under conjugacy re-
lation is closed under ∪. However, while Cir((A2)∗), Cir((A3)∗) ∈ C(Fin, F in),
as shown in Section 3, we have Cir((A2)∗) ∪ Cir((A3)∗) 6∈ C(Fin, F in). This
means that Reg∼ ∩ C(Fin, F in) is not closed w.r.t. ∪. One could ask for ad-
ditional hypotheses to be added so that the union of circular regular splicing
languages will still be a circular splicing language. This research line could be a
promising direction towards a complete characterization of the class of circular
regular languages that are generated by finite circular splicing. In this direction,
further investigations are contained in a work in progress [5].

Another interesting problem could be the investigation of the splicing sub-
system of a given circular splicing system. For example, Cir((A2)∗), for A =
{a, b}, is CPA generated by I = ∼A2 and R′ = {w1|1$1|w2 | w1, w2 ∈ A2}
(Proposition 5). Thus, by extracting R1 = {aa|1$1|aa}, we obtain ∼(aa)∗, with
R2 = {bb|1$1|bb} we generate ∼(bb)∗ and with R3 = {ab|1$1|ab} we obtain
∼(ab)∗. It could be interesting to prove or to disprove that circular languages can



128 P. Bonizzoni et al.

be obtained by extraction as described before. Let us take L1 = {w ∈ A∗ | ∃h, k ∈
IN |w|a = 2k, |w|b = 2h} as in Example 2. The circular language Cir(L1) can-
not be generated by choosing a subset of R = {a|1$1|a, b|1$1|b, a|1$1|b}. This
investigation is related to the notion of a minimal splicing system introduced in
[17], where it was called descriptional complexity. It goes without saying that
this notion is the counterpart of the minimal automaton for regular languages.
Here, the minimality of the system could be referred to the cardinality of R or
to the length of the rules in R.

Acknowledgments. Many thanks to J. Berstel and A. Restivo for suggesting
us references [3] and [19] during the conference Words99 [6]. The authors also
wish thank A. Bertoni for useful discussions.

References

1. L. M. Adleman, Molecular computation of solutions to combinatorial problems,
Science, 226, (1994), 1021 − 1024.

2. J. Berstel, D. Perrin, Theory of codes, Academic Press, New York, (1985).
3. J. Berstel, A. Restivo, Codes et sousmonoides fermes par conjugaison, Sem. LITP,

81 − 45, (1981), 10 pages.
4. P. Bonizzoni, R. Zizza, Deciding whether a regular language is a splicing language,

submitted, (1999).
5. P. Bonizzoni, C. De Felice, G. Mauri, R. Zizza, Circular splicing and regular lan-

guages, manuscript, (2000).
6. P. Bonizzoni, C. De Felice, G. Mauri, R. Zizza, Linear and circular splicing,

WORDS99, (1999).
7. P. Bonizzoni, C. Ferretti, G. Mauri, R. Zizza, Separating some splicing models,

Grammar Systems 2000, (2000).
8. K. Culik, T. Harju, Splicing semigroups of dominoes and DNA, Discrete Appl.

Math., 31, (1991), 261 − 277.
9. R. W. Gatterdam, Algorithms for splicing systems, SIAM Journal of Computing,

21 : 3, (1992), 507 − 520.
10. D. Giammarresi, A. Restivo, Two-dimensional Languages, in: Handbook of Formal

Languages, G. Rozenberg & A. Salomaa, Eds., Springer Verlag, Vol. 3, (1996),
215 − 267.

11. T. Head, Formal Language Theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors, Bull. Math. Biol., 49, No. 5, (1987), 737 − 759.

12. T. Head, Gh. Paun, D. Pixton, Language theory and molecular genetics: generative
mechanisms suggested by DNA recombination, in: Handbook of Formal Languages,
G. Rozenberg & A. Salomaa, Eds., Springer Verlag, Vol. 2, (1996), 295 − 360.

13. J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and
Computing, Addison-Wesley, Reading, Mass. (1979).

14. S.M. Kim, Computational modeling for genetic splicing systems, SIAM Journal of
Computing, 26, (1997), 1284 − 1309.

15. M. Lothaire, Combinatorics on Words, Encyclopedia of Math. and its Appl., Ad-
dison Wesley Publishing Company (1983).

16. G. Paun, On the splicing operation, Discrete Applied Math., 70, (1996), 57 − 79.



DNA and Circular Splicing 129

17. G. Paun, G. Rozenberg, A. Salomaa, DNA computing, New Computing Paradigms,
Springer-Verlag, (1998).

18. D. Pixton, Regularity of splicing languages, Discrete Applied Math. 69, (1996),
101 − 124.

19. C. Reis, G. Thierren, Reflective star languages and codes, Information and Control,
42, (1979), 1 − 9.

20. R. Siromoney, K.G. Subramanian, A. Dare, Circular DNA and Splicing Systems,
Proc. of ICPIA, LNCS 654, Springer-Verlag, (1992), 260 − 273.



Molecular Computing with Generalized
Homogeneous P-Systems

Rudolf Freund1 and Franziska Freund2

1 Institut für Computersprachen
Technische Universität Wien

Karlsplatz 13
A-1040 Wien, Austria

tel.: ++43 1 58801 18542
rudi@logic.at

2 De La Salle Schools
Strebersdorf

Anton Böck-Gasse 37
A-1215 Wien, Austria

tel.: ++43 1 58801 18542
ffreund@logic.at

Abstract. Recently P-systems were introduced by Gheorghe Păun as
a new model for computations based on membrane structures. The ba-
sic variants of P-systems shown to have universal computational power
only took account of the multiplicities of atomic objects, some other
variants considered rewriting rules on strings. Using the membranes as
a kind of filter for specific objects when transferring them into an inner
compartment or out into the surrounding compartment turned out to
be a very powerful mechanism in combination with suitable rules to be
applied within the membranes in the model of generalized P-systems,
GP-systems for short. GP-systems were shown to allow for the simu-
lation of graph controlled grammars of arbitrary type based on produc-
tions working on single objects; moreover, various variants of GP-systems
using splicing or cutting and recombination of strings were shown to
have universal computational power, too. In this paper, we consider GP-
systems with homogeneous membrane structures, GhP-systems for short,
using splicing or cutting and recombination of string objects with specific
markers at the ends of the strings that can be interpreted as electrical
charges. The sum of these electrical charges determines the permeability
of the membranes to the string objects, and we allow only objects with
the absolute value of the difference of electrical charges being equal to 1
to pass a membrane in both directions. We show that such GhP-systems
have universal computational power; for GhP-systems using splicing and
a bounded number of markers the obtained results are optimal with re-
spect to the underlying membrane structure. Moreover, a very restricted
variant of such GhP-systems characterizes the (strictly) minimal linear
languages.

A. Condon (Ed.): DNA 2000, LNCS 2054, pp. 130–144, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Generalized Homogeneous P-Systems 131

1 Introduction

In the model of P-systems – as introduced by Gheorghe Păun in [10] – the most
important feature is the membrane structure (for a chemical variant of this
idea see [1]) consisting of membranes hierarchically embedded in the outermost
skin membrane. Every membrane encloses a region possibly containing other
membranes; the part delimited by the membrane labelled by k and its inner
membranes is called compartment k. A region delimited by a membrane not only
may enclose other membranes but also specific objects and operators, which in
general are considered as multisets, as well as evolution rules, which in generalized
P-systems (GP-systems) as introduced in [4] and [5] are evolution rules for the
operators. In GP-systems, ground operators as well as transfer operators (simple
rules of that kind are called travelling rules in [17]) are taken into account; these
transfer operators transfer objects or operators (or even rules) either to the outer
compartment or to an inner compartment delimited by a membrane of specific
kind with also checking for some permitting and/or forbidding conditions on the
objects to be transferred. In that way, the membranes act as a filter like in test
tube systems (e.g., see [13] and [6]). In [5] it was shown how GP-systems with
splicing or cutting and recombination rules can simulate test tube systems using
the corresponding type of molecular rules. In contrast to the original definition
of P-systems (e.g., see [2], [9]), in GP-systems no priority relations on the rules
are used, and we do not enforce parallelism guarded by a universal clock.

Already in his first papers on membrane computing ([9]), Gheorghe Păun
considered P-systems using the splicing operation on strings. P-systems based
on splicing further were investigated in [15] and [16]. In all these variants, one
main feature was that together with the application of a splicing rule the re-
sulting string(s) actively could be moved out of a region or moved into an inner
membrane. In [8] a specific model of generalized P-systems based on cutting and
recombination with special homogeneous membrane structures were considered,
the objects (assumed to be available in an unbounded number) being able to
pass the membranes at a specific depth of the membrane structure depending
on their electrical charges only.

In this paper we consider such GhP-systems (generalized homogeneous P-
systems) based on splicing or cutting and recombination with a completely uni-
form permeability condition for all the membranes in the system, i.e., only ob-
jects with the absolute value of the difference of electrical charges being equal to
1 can pass a membrane in both directions. For GhP-systems based on splicing,
the simplest non-trivial membrane structure is already sufficient for obtaining
universal computational power. On the other hand, for GhP-systems based on
cutting and recombination the optimality of the obtained results remains as an
open problem.

Both the membrane structure as well as the operations used in GhP-systems
based on splicing or cutting and recombination are motivated by nature, and
moreover, the uniform permeability conditions for the membranes we are going
to use in this paper look quite realistic. Yet despite this chemically/biologically
motivated background, real implementations of GhP-systems - like implemen-



132 R. Freund and F. Freund

tations of other variants of P-systems - in the lab (“in vitro”) remain a major
challenge for the future.

In the following section we start with some preliminary notions from formal
language theory and then give a general definition of a molecular system that
also captures the notion of splicing and cutting/recombination systems of strings.
In the third section we introduce the model of GhP-systems considered in this
paper; as a first result, we show how a very restricted variant of GhP-systems
characterizes the strictly minimal linear languages; moreover, we investigate the
computational power of GhP-systems with the simplest membrane structure
of depth zero. Our main result showing that GhP-systems using splicing or
cutting/recombination have universal computational power is elaborated in the
fourth section. A short summary and an outlook to future research topics and
open problems conclude the paper.

2 Preliminary Definitions

For an alphabet V , by V ∗ we denote the free monoid generated by V under the
operation of concatenation; the empty string is denoted by λ, and |w| denotes
the length of the string w, w ∈ V ∗. V ∗ \ {λ} is denoted by V +; any subset of
V ∗ (V +) is called a (λ-free) language. Z denotes the set of integers; N denotes
the set of non-negative integers.

A minimal linear grammar G is a quadruple ({S} , VT , P, S), where S is
the only non-terminal symbol and the start symbol of the grammar, VT is the
terminal alphabet, and P is the set of linear productions of the forms S → w
with w ∈ V ∗

T or S → uSw with uw ∈ V +
T . If, moreover, S → λ is the only

production in P of the form S → w with w ∈ V ∗
T , then G is called a strictly

minimal linear grammar.
A molecular system is a quadruple σ = (B, BT , P, A), where B and BT are

sets of objects and terminal objects, respectively, with BT ⊆ B, P is a set of
productions, and A is a set of axioms from B. A production p in P in general is
a partial recursive relation ⊆ Bk ×Bm for some k, m ≥ 1, where we also demand
that the domain of p is recursive (i.e., given w ∈ Bk it is decidable if there exists
some v ∈ Bm with (w, v) ∈ p) and, moreover, that the range for every w is finite,
i.e., for every w ∈ Bk, card ({v ∈ B | (w, v) ∈ p}) < ∞. For any two sets L and
L′ over B, we say that L′ is computable from L by a production p if and only if
for some (w1, ..., wk) ∈ Bk and (v1, ..., vm) ∈ Bm with (w1, ..., wk, v1, ..., vm) ∈ p
we have {w1, ..., wk} ⊆ L and L′ = L ∪ {v1, ..., vm} ; we also write L =⇒p L′

and L =⇒σ L′. A computation in σ is a sequence L0, ..., Ln such that Li ⊆ B,
0 ≤ i ≤ n, n ≥ 0, as well as Li =⇒σ Li+1, 0 ≤ i < n; in this case we also write
L0 =⇒n

σ Ln, and moreover, we write L0 =⇒∗
σ Ln if L0 =⇒n

σ Ln for some n ≥ 0.
The language generated by σ is

L(σ) = {w | A =⇒∗
σ L, w ∈ L ∩ BT } .

The special productions on string objects we shall consider in the following
are the cutting and recombination operations as well as the splicing operation:



Generalized Homogeneous P-Systems 133

A cutting/recombination scheme (a CR-scheme for short) is a quadruple
(V, M, C, R) , where V is a finite alphabet; M is a finite set of markers; V
and M are disjoint sets; C is a set of cutting rules of the form u#l$m#v,
where u ∈ MV ∗ ∪ V ∗, v ∈ V ∗M ∪ V ∗, and m, l ∈ M, and #, $ are special
symbols not in V ∪ M ; R ⊆ M × M is the recombination relation representing
the recombination rules. Cutting and recombination rules are applied to objects
from MV ∗M. For x, y, z ∈ MV ∗M and a cutting rule c = u#l$m#v we define
x =⇒c (y, z) if and only if for some α ∈ MV ∗ and β ∈ V ∗M we have x =
αuvβ and y = αul, z = mvβ. For x, y, z ∈ MV ∗M and a recombination rule
r = (l, m) from R we define (x, y) =⇒r z if and only if for some α ∈ MV ∗

and β ∈ V ∗M we have x = αl, y = mβ, and z = αβ. For a CR-scheme
σ = (V, M, C, R) and any language L ⊆ MV ∗M, σ (L) then denotes the set
of all objects obtained by applying one cutting or one recombination rule to
objects from L. We also define σ0 (L) = L and σi+1 (L) = σ

(
σi (L)

)
for all

i ≥ 0, as well as σ(0) (L) = L and σ(i+1) (L) = σ(i) (L) ∪ σ
(
σ(i) (L)

)
for all

i ≥ 0; moreover, we denote σ(∗) (L) =
⋃∞

i=0 σ(i) (L) . An extended CR-system is
a molecular system of type CR σ, σ = (MV ∗M, MT V ∗

T MT , P, A) , where VT ⊆ V
is the set of terminal symbols, MT ⊆ M is the set of terminal markers, A is the
set of axioms, P is the union of the relations (productions) defined by the cutting
rules from C (⊆ (MV ∗M) × (MV ∗M)2) and the recombination rules from R

(⊆ (MV ∗M)2 × (MV ∗M)), and (V, M, C, R) is the underlying CR-scheme.
Throughout this paper we shall restrict ourselves to markers that can be

interpreted as electrical charges of ions, i.e., we shall write [+k] and [−k], k ∈ N,
for these special markers. In that sense, the recombination rules we use will be of
the simple forms ([+k] , [−k]) and ([−k] , [+k]), k ∈ N; the objects we are working
with are of the form [+k] w [−l] with w ∈ V ∗. On such objects from Z′V ∗Z′,
where Z′ is a finite subset of {[−k] , [+k] | k ∈ N} (i.e., on linear objects with
electrical charges at both ends) we can also define the splicing operation in the
following way:

Let Z′ be a finite subset of {[−k] , [+k] | k ∈ N} and let V be a finite alphabet.
An extended splicing system (extended H system) over Z′V ∗Z′ is a molecular
system of type H σ, σ = (Z′V ∗Z′,Z′′V ∗

T Z′′, P, A) , where VT ⊆ V is the set of
terminal symbols, Z′′ ⊆ Z′ is the set of terminal markers, A is the set of axioms,
P is a set of splicing rules of the form u1#u2$v1#v2, where u1, v1 ∈ Z′V ∗ ∪ V ∗,
u2, v2 ∈ V ∗Z′∪V ∗, and #, $ are special symbols not in V ∪Z′; for x, y, z ∈ Z′V ∗Z′

and a splicing rule s = u1#u2$v1#v2 we define (x, y) =⇒s z if and only if for
some x1, y1 ∈ Z′V ∗ and x2, y2 ∈ V ∗Z′ we have x = x1u1u2x2 and y = y1v1v2y2
as well as z = x1u1v2y2 (we omit the second result y1v1u2x2).

3 Generalized Homogeneous P-Systems (GhP-Systems)

In this section we quite informally describe the model of GhP-systems discussed
in this paper, especially the features not captured by the original model of P-
systems as described in [2], [9], and [10]. In these papers, only the number of



134 R. Freund and F. Freund

symbols is counted in the multiset sense, whereas in [14] at least the outputs
are strings. In generalized P-systems (for the basic definition of GP-systems the
reader is referred to [4] and [5]) the objects usually are strings or graphs, etc.

0

1 2

3

4
5

6

h0

h1

h3

h6

h5h4

h2

























J
J
J

J
J
J

J
J
J

Fig. 1. Membrane structure [0[1[3[6]6]3[4]4]1[2[5]5]2]0.

The basic ingredient of a (G(h))P-system is a membrane structure consist-
ing of several membranes placed within one unique surrounding membrane, the
so-called skin membrane. All the membranes can be labelled (in a one-to-one
manner) by natural numbers; the outermost membrane (skin membrane) always
is labelled by 0. In that way, a membrane structure can uniquely be described
by a string of correctly matching parentheses, where each pair corresponds to
a membrane. For example, the membrane structure depicted in Figure 1, which
within the skin membrane contains two inner membranes labelled by 1 - con-
taining membrane 3 (with membrane 6 inside) and membrane 4 - as well as by 2
(containing membrane 5) is described by [0[1[3[6]6]3[4]4]1[2[5]5]2]0. Figure 1 also
shows that a membrane structure graphically can be represented by a Venn dia-
gram, where two sets can either be disjoint or one set be the subset of the other
one. In this representation, every membrane encloses a region possibly contain-
ing other membranes; the part delimited by the membrane labelled by k and its
inner membranes is called compartment k in the following. The space outside
the skin membrane is called outer region. Another obvious representation of a
membrane structure is a tree as shown in Figure 1; in that sense the depth of a
membrane structure can be defined as the depth of the corresponding tree; e.g.,
the depth of [0[1[3[6]6]3[4]4]1[2[5]5]2]0 is 3.

Informally, in [9] and [10] P-systems were defined as membrane structures
containing multisets of objects in the compartments k as well as evolution rules
for the objects. A priority relation on the evolution rules guarded the applica-



Generalized Homogeneous P-Systems 135

tion of the evolution rules to the objects, which had to be affected in parallel
(if possible according to the priority relation). The output was obtained in a
designated compartment from a halting configuration (i.e., a configuration of
the system where no rules can be applied any more).

A generalized homogeneous P-system (GhP-system) of molecular type X is a
construct γ, γ = (B, BT , P, A, µ, I, in, out), where

– (B, BT , P, A) is a molecular system of type X (we shall consider molecular
systems of type CR and H in the following);

– µ is a membrane structure (with the membranes labelled by natural numbers
0, ..., n);

– I = (I0, ..., In), where Ik is the initial contents of compartment k containing
a set of objects from A as well as a set of rules from P ;

– in for each j ∈ {0, 1, ..., n} specifies a condition an object must fulfill in order
to be able to pass into the inner compartment of a membrane k, k ∈ {1, ..., n},
in the region enclosed by membrane j;

– out specifies a condition an object must fulfill in order to be able to pass a
membrane j, j ∈ {0, 1, ..., n}, into its surrounding compartment.

A computation in γ starts with the initial configuration with Ik being the
contents of compartment k. In contrast to the original definition of P-systems,
the objects in the compartments are not treated in the multiset sense; instead we
assume all objects occurring in a compartment to be available in an unbounded
number. A transition from one configuration to another one is performed by
applying a rule (from P ) in Ik to objects in compartment k or by moving an
element out of a compartment k or into a compartment k according to the
conditions given by out and in. The language generated by γ is the set of all
terminal objects w ∈ BT obtained in the outer region by some computation in
γ.

In test tube systems (e.g., see [6]), the contents of the tubes is redistributed
to all other tubes according to specific input or output filters; the operations in
the tubes are based on molecular systems of type H or CR. In [6] we showed
that test tube systems with only two test tubes using splicing or cutting and
recombination rules in the tubes and filters of a special type between the tubes
have the computational power of arbitrary grammars and Turing machines,
respectively. According to the definition given above, in the GhP-systems of
type CR used in [8], we only allowed one unique out-condition, whereas the in-
conditions specified by in depended on the region the membrane to be passed
lay in, where the in-conditions of regions at the same level of the membrane
structure coincided; GhP-systems of type CR with a membrane structure of
the form [0[1[n+1]n+1]1...[n[2n]2n]n]0 of depth two were shown to have universal
computational power in [8].

In this paper we will use a completely uniform permeability condition for the
membranes, i.e., only objects with the absolute value of the sum of electrical
charges being equal to 1, can pass the membranes in both directions; hence in
the following, we shall not specify this uniform static in- and out-conditions any



136 R. Freund and F. Freund

more. Although using this special permeability condition for the membranes,
we can improve the results for GhP-systems of type CR shown in [8], i.e., we
can reduce the complexity of the membrane structure to depth one, and for
GhP-systems of type H we can establish even optimal results, i.e., even with the
simplest non-trivial membrane structure [0[1]1]0 we obtain universal computa-
tional power (compare with the results proved in [5], [15], and [16]).

To illustrate the model of GhP-systems, we give an example of a GhP-system
of type CR generating the (non-regular) language {anbn | n ≥ 0}:

0

axioms:
[+1][−2]

[+1][−5]

[+4][−2]

recombination rules:
([−4], [+4])

([−5], [+5])
1

axioms:
[+5]a[−1]

[+2]b[−4]

recombination rules:
([−1], [+1])

([−2], [+2])

Fig. 2. GhP-system generating {anbn | n ≥ 0}.

Example 1. The main ingredients of a GhP-system of type CR generating
the language {anbn | n ≥ 0} are depicted in Figure 2. In the skin membrane
we start with (terminal) objects of the form [+1]anbn[−2] for some n ≥ 0;
these objects can enter compartment 1, where one application of each of the
recombination rules ([−1], [+1]) and ([−2], [+2]) with the corresponding axioms
yields [+5]an+1bn+1[−4], which object can pass back to compartment 0, where
the application of the recombination rules ([−4], [+4]) and ([−5], [+5]) yields the
terminal object [+1]an+1bn+1 [−2] .

Replacing the recombination rules ([−k], [+k]), k ∈ {1, 2, 4, 5}, by the cor-
responding special splicing rules #[−k]$[+k]# yields a GhP-system of type H
generating {anbn | n ≥ 0}.

In a similar way as it was shown for the language {anbn | n ≥ 0} in Example 1,
all strictly minimal linear languages can be generated by GhP-system of type
CR using only recombination rules in a membrane structure of depth 1:

Lemma 2. Any strictly minimal linear language generated by a strictly min-
imal linear grammar G, G = ({S} , VT , P, S), can be generated by a GhP-
system of type CR using only recombination rules within the membrane structure
[0[1]1...[n]n]0, where n is the number of linear productions of the form S → uSw
with uw ∈ V +

T in P .



Generalized Homogeneous P-Systems 137

Proof. The main parts of the GhP-system are depicted in Figure 3. The terminal
objects w ∈ L (G) can leave compartment 0 in the form [+1]w[−2].

0

axioms:

[+1][−2]

[+1][−5]

[+4][−2]

recombination rules:

([−4], [+4])

([−5], [+5])
k

axioms:

[+5]uk[−1]

[+2]vk[−4]

for S → ukSvk ∈ P

recombination rules:

([−1], [+1])

([−2], [+2])

. . . . . .

Fig. 3. GhP-system of type CR generating L(G), where G = ({S}, VT , P, S) is a strictly
minimal linear grammar.

Without further proof we mention that GhP-systems of type CR of the very
restricted form as constructed in the preceding lemma exactly characterize the
strictly minimal linear languages. Moreover, as already mentioned above, the re-
combination rule ([−k], [+k]) can be simulated by the splicing rule #[−k]$[+k]#,
hence, in that way we also obtain a characterization of strictly minimal linear
languages by GhP-systems of type H.

To the end of this section, we investigate the computational power of GhP-
systems with the simplest membrane structure [0]0.

Lemma 3. The family of regular languages can be characterized by GhP-systems
of type H/CR with the simplest membrane structure [0]0.

Proof. Extended H-systems as well as extended CR-systems exactly character-
ize the family of regular languages (see [13] and [18]). Hence, if we consider a
GhP-system of type H/CR with the simplest membrane structure [0]0, then the
resulting language in compartment 0 is regular. As the family of regular lan-
guages is closed under intersection, the language obtained in the outer region
as the intersection of this language in compartment 0 and a regular language of
the form Z′′V ∗

T Z′′ with Z′′ being a finite subset of {[−k] , [+k] | k ∈ N} again is
regular.

On the other hand, let G, G = (VN , VT , P, S) , be a regular grammar with
productions in P of the form B → cD or B → c, B, D ∈ VN , c ∈ VT :

L (G) is generated by the GhP-system γ of type H :



138 R. Freund and F. Freund

γ = (B, BT , R, A, [0]0, (A ∪ R))
B = Z′V ∗Z′

Z′ = {[+k] , [−k] | 1 ≤ k ≤ 4}
V = VN ∪ VT

BT = Z′′V ∗
T Z′′

Z′′ = {[+k] , [−k] | 1 ≤ k ≤ 2}
R = R1 ∪ R2

R1 = {u#B [−4] $ [+4] #cD [−4] | B → cD ∈ P, u ∈ W}
R2 = {u#B [−4] $ [+4] #c [−1] | B → c ∈ P, u ∈ W}
W = {[+1]} ∪ {[+1]} VT ∪ V 2

T

A = {[+1]S [−4]} ∪ A1 ∪ A2

A1 = {[+4] cD [−4] | B → cD ∈ P}
A2 = {[+4] c [−2] | B → c ∈ P}
The application of a production B → cD ∈ P is simulated by using a suit-

able splicing rule of the form u#B [−4] $ [+4] #cD [−4] together with the axiom
[+4] cD [−4] , the application of a terminal production B → c ∈ P is simulated
by using a suitable splicing rule of the form u#B [−4] $ [+4] #c [−2] together
with the axiom [+4] c [−2] , thus finally yielding a terminal object [+1]w [−2] for
some w ∈ V +

T .
A GhP-system γ of type CR, γ = (B, BT , R, A, [0]0, (A ∪ R)), generating

L (G) is more complicated, because in this case we have to store the information
about the non-terminal symbol at the end of the sentential form in the marker
on the right-hand side; on the other hand, the reader should observe that we
only need recombination rules, but no cutting rules:

Let VN = {X2i | 2 ≤ i ≤ m} and S = X4.
Then we take B = Z′V ∗Z′, Z′ = {[+k] , [−k] | 1 ≤ k ≤ 2m} , and V and BT

as above; moreover, we now take the following recombination rules and axioms:

R = {([−2i] , [+2i]) | 2 ≤ i ≤ m}
A = {[+1] [−4]} ∪ A1 ∪ A2

A1 = {[+2i] c [−2j] | X2i → cX2j ∈ P}
A2 = {[+2i] c [−2] | X2i → c ∈ P}
It is easy to see that a terminal object [+1]w [−2] for some w ∈ V +

T is
generated in compartment 0 if and only if w ∈ L (G).

In the proofs of Lemma 3 we could also take BT = B, because the filtering
out of the terminal objects could be achieved by the permeability condition for
the skin membrane 0 only.

In contrast to the rather obvious result established for GhP-systems of type
H in Lemma 3, where we only need a limited number of markers, the number
of markers is not bounded in the GhP-systems of type CR and depends on the
number of non-terminal symbols in the underlying regular grammar, which fact



Generalized Homogeneous P-Systems 139

may give rise to an infinite non-collapsing hierachy with respect to the number
of markers.

4 The Computational Power of GhP-Systems of Type H
and CR

The main result we prove in the following establishes the universal computational
power of GhP-systems. First we improve the result established for GhP-systems
of type CR in [8]:

Theorem 4. Any recursively enumerable language L can be generated by a
GhP-system γ of type CR with a fixed number of markers in the membrane
structure [0[1]1...[n]n]0.

Proof. The proof idea to simulate the productions of a grammar generating L
like in Post systems in normal form (“rotate-and-simulate”) has already been
used in many papers on splicing systems and cutting/recombination systems
(see [13] and [6]). Moreover, instead of a grammar G′ generating L, we consider
a grammar G, G = (VN ∪ {B} , VT ∪ {d} , P, S) , generating the language L {d} ,
where the end marker d, d /∈ W, W = VN ∪{B}∪VT , in any derivation of a word
w′d, for w′ ∈ L, is generated exactly in the last step of this derivation in G and
for each symbol X ∈ W the production X → X is in P . A string w ∈ (VN ∪ VT )∗

appearing in a derivation of such a grammar G generating L {d} , is represented
by its rotated versions [+3]Xw2Bw1Y [−4] , where w = w1w2 and B is a special
symbol indicating the beginning of the string within the rotated versions and
X, Y are special symbols marking the ends of the strings. A final string first
appears in the form [+7]XdBw′Y [−6] , where w′ is the final result from L
which we want to get, and finally leaves compartment 0 in the form [+1] w′ [−2].

The GhP-system γ we construct, for each production pk : αk → βk, 1 ≤ k ≤
n, where without loss of generality we assume 1 ≤ |αk| ≤ 2, 0 ≤ |βk| ≤ 2, and
||αk| − |βk|| ≤ 1, contains compartment k :
For simulating pk in compartment k, 1 ≤ k ≤ n, we use the cutting rules

u# [−3] $ [+3] #αkY [−6] , u ∈ W ∪ {X}, and
[+5]X# [−11] $ [+11] #v, v ∈ W ,

as well as the recombination rules
([−3] , [+3]) and
([−11] , [+11])

together wih the axioms
[+3]Y [−8] and
[+9]Xβk [−11].

Thus we obtain [+9] XβkwY [−8] from [+5]XwαkY [−6].
In compartment 0 we start with the axiom [+5]XBSY [−6]. The axioms

[+5] [−9] and [+8] [−6] together with the recombination rules ([−8] , [+8]) and
([−9] , [+9]) allow us to obtain [+5]XβkwY [−6] from [+9]XβkwY [−8] thus
finishing the simulation of pk. An object of the form [+9]XvY [−8] could also
pass immediately into each of the compartments k, 1 ≤ k ≤ n, but there it



140 R. Freund and F. Freund

could not be processed, and therefore the only possibility would be to leave
compartment k unchanged again.

Final strings first appearing in the form [+9]XdBw′Y [−8] , w′ ∈ L, can
leave compartment 0 in the form [+1] w′ [−2] after the application of suitable
cutting rules:

[+9]XdB# [−1] $ [+1] #a, a ∈ VT ∪ {Y }, and
b# [−2] $ [+2] #Y [−8] , b ∈ VT ∪ {[+1]}.
If a cutting rule b# [−2] $ [+2] #Y [−8] is applied too early, we obtain an

object [+5]Xau [−2] with a 6= d, which object cannot be processed any more.
A terminal object [+1]w′ [−2] not only can leave compartment 0, but also enter
any other compartment k, 1 ≤ k ≤ n, yet there a terminal object cannot be
processed any more.

According to the definitions and explanations above, we obtain the following
formal description of the GhP-system γ:

γ = (B, BT , R, A, [0[1]1...[n]n]0, (A0 ∪ R0, A1 ∪ R1, ..., An ∪ Rn))
B = Z′V ∗Z′

Z′ = {[+k] , [−k] | 1 ≤ k ≤ 11}
V = VN ∪ VT ∪ {d, B, X} = W ∪ {d, X}
BT = Z′′V ∗

T Z′′

Z′′ = {[+k] , [−k] | 1 ≤ k ≤ 2}
R = R0 ∪ R1 ∪ ...Rn

A = A0 ∪ A1 ∪ ...An

The sets of axioms are:
A0 = {[+5]XBSY [−6], [+5] [−9] , [+8] [−6]}
Ak = {[+3]Y [−8] , [+9]Xβk [−11]} for 1 ≤ k ≤ n

The sets of rules R0, ..., Rn are specified by the following sets of cutting rules
and recombination rules:

R0 = {([−8] , [+8]) , ([−9] , [+9])} ∪
{[+9]XdB# [−1] $ [+1] #a | a ∈ VT ∪ {Y }} ∪
{b# [−2] $ [+2] #Y [−8] | b ∈ VT ∪ {[+1]}}

Rk = {u# [−3] $ [+3] #αkY [−6] | u ∈ W ∪ {X}} ∪
{[+5]X# [−11] $ [+11] #v | v ∈ W} ∪
{([−3] , [+3]) , ([−11] , [+11])} for 1 ≤ k ≤ n

The remaining technical details of the proof are left to the reader.

The complexity of the GhP-system of type CR constructed in the preceding
proof depends on the number of productions (and symbols) in the underlying
grammar, which may give rise to a non-collapsing hierarchy with respect to
the number of inner membranes. In contrast, for GhP-systems of type H we
obtain an optimal result with respect to the membrane structure (compare with
Lemma 3).



Generalized Homogeneous P-Systems 141

Theorem 5. Any recursively enumerable language L can be generated by a
GhP-system γ of type H with a fixed number of markers in the simplest non-
trivial membrane structure [0[1]1]0.

Proof. The main proof idea is the same as in the preceding proof, yet we also take
advantage of the idea used in some proofs in [15] how to check the correspondence
of the symbols marking the left and the right end of an intermediate string.

For simulating the production pk : αk → βk, 1 ≤ k ≤ n, in compartment 1,
we start with applying

u#αkY [−3] $ [+3] #Yk [−6] , u ∈ W ∪ {X} , where W = VN ∪ VT ∪ {B}, and
[+7]Xkβk# [−2] $ [+2]X#v, v ∈ W ∪ {Yk} ,

using the axioms [+3] Yk [−6] and [+7]Xkβk [−2] .
In compartment 0, where we start with the axiom [+2]XBSY [−3], the indices

of the variables X and Y are decremented by applying
[+4]Xi−1# [−7] $ [+7]Xi#v, v ∈ W ∪ {d} , 1 ≤ i ≤ n, and
u#Yj [−6] $ [+6] #Yj−1 [−5] , u ∈ W, 1 ≤ j ≤ n,

using the axioms [+4] Xi−1 [−7] and [+6]Yj−1 [−5] .

Objects of the form [+4] XiwYj [−5] can pass into compartment 1, where we
apply

u#Yj [−5] $ [+5] #Yj [−6] , u ∈ W, and
[+7]Xi# [−5] $ [+5]Xi#v, v ∈ W ∪ {d} ,

using the axioms [+5]Yj [−6] and [+7]Xi [−5] , for 0 ≤ i, j ≤ n − 1, in order to
obtain [+7]XiwYj [−6] .

If in the first steps in compartment 1 the correctly matching splicing rules
have been applied, we finally reach compartment 0 with an object of the form
[+7]X0wY0 [−6] , which is the only case that allows us to regain an object of the
form [+2]XwY [−3] by applying the splicing rules

[+2]X# [−7] $ [+7]X0#v, v ∈ W, and
u#Y0 [−6] $ [+6] #Y [−3] , u ∈ W,

using the axioms [+2] X [−7] and [+6]Y [−3] .
From terminating objects of the form [+7]X0dBw′Y0 [−6] with w′ ∈ L we

obtain the terminal objects [+1]w′ [−2] by applying the splicing rules
[+1] #X [−7] $ [+7]X0dB#a, a ∈ VT ∪ {Y0}, and
b#Y0 [−6] $ [+6]Y # [−2] , b ∈ VT ∪ {[+1]},

using the axioms [+1] X [−7] and [+6]Y [−2].

From the list of axioms and splicing rules in the compartments 0 and 1 as
described above the formal description of the GhP-system γ of type H can easily
be completed; observe that some of the axioms, i.e., [+6]Yj [−5] and [+5]Yj [−6] ,
for 0 ≤ j ≤ n − 1, can travel between compartment 0 and compartment 1, but
this does not violate the correct functioning of γ:



142 R. Freund and F. Freund

γ = (B, BT , R, A, [0[1]1]0, (A0 ∪ R0, A1 ∪ R1))
B = Z′V ∗Z′

Z′ = {[+k] , [−k] | 1 ≤ k ≤ 7}
V = VN ∪ VT ∪ {d, B, X} = W ∪ {d, X}
BT = Z′′V ∗

T Z′′

Z′′ = {[+k] , [−k] | 1 ≤ k ≤ 2}
R = R0 ∪ R1

A = A0 ∪ A1

The sets of axioms are:
A0 = {[+2]XBSY [−3], [+2]X [−7] , [+6]Y [−3] , [+1]X [−7] , [+6]Y [−2]} ∪

{[+4]Xk [−7] , [+6]Yk [−5] | 0 ≤ k ≤ n − 1}
A1 = {[+3]Yk [−6] , [+7]Xkβk [−2] | 1 ≤ k ≤ n} ∪

{[+5]Yk [−6] , [+7]Xk [−5] | 0 ≤ k ≤ n − 1}
The splicing rules are collected in R0 and R1 as follows:

R0 = {[+4]Xi−1# [−7] $ [+7]Xi#v | v ∈ W ∪ {d} , 1 ≤ i ≤ n} ∪
{u#Yj [−6] $ [+6] #Yj−1 [−5] | u ∈ W, 1 ≤ j ≤ n} ∪
{[+2]X# [−7] $ [+7]X0#v | v ∈ W} ∪
{u#Y0 [−6] $ [+6] #Y [−3] | u ∈ W} ∪
{[+1] #X [−7] $ [+7]X0dB#a | a ∈ VT ∪ {Y0}} ∪
{b#Y0 [−6] $ [+6]Y # [−2] | b ∈ VT ∪ {[+1]}}

R1 = {u#αkY [−3] $ [+3] #Yk [−6] | u ∈ W ∪ {X} , 1 ≤ k ≤ n} ∪
{[+7]Xkβk# [−2] $ [+2]X#v | v ∈ W ∪ {Yk} , 1 ≤ k ≤ n} ∪
{u#Yk [−5] $ [+5] #Yk [−6] | u ∈ W, 0 ≤ k ≤ n − 1} ∪
{[+7]Xk# [−5] $ [+5]Xk#v | v ∈ W ∪ {d} , 0 ≤ k ≤ n − 1}

According to the definitions and explanations given above, the reader may
easily verify that L (γ) = L, which completes the proof.

The variables Xk and Yk used in the preceding proof can be encoded in
the markers; hence, allowing an unbounded number of markers, the proof idea
elaborated above can also be used for showing the following result, i.e., there is
a trade-off between the number of membranes and the number of markers to be
used in GhP-systems of type CR:

Corollary 6. Any recursively enumerable language L can be generated by
a GhP-system γ of type CR in the simplest non-trivial membrane structure
[0[1]1]0.

Obviously, we can encode arbitrary additional data u in the axiom, i.e., we
can take [+k]XBSuY [−k − 1] instead of [+k]XBSY [−k − 1] in compartment
0; moreover, starting with these axioms, the grammars can be considered as
computing devices, the terminal strings [+1]w′ [−2] representing the output w′



Generalized Homogeneous P-Systems 143

computed from the input u. Hence, from the preceding theorems we also obtain
the following result:

Corollary 7. Any partial recursive function can be computed by a GhP-system
of type CR and by a GhP-system of type H, respectively, using a fixed number
of markers only.

The complexity of the GhP-systems of type CR and H, respectively, in Corol-
lary 7 is the same as of the corresponding GhP-systems constructed in the proofs
of Theorems 4 and 5, i.e. for GhP-systems of type H the result is optimal with
respect to the membrane structure and a fixed number of markers.

5 Conclusion

As it was already pointed out in [10], the idea of membrane structures offers a
nearly unlimited variety of variants. In this paper we considered homogeneous
(static) membranic structures with splicing or cutting/recombination rules inside
and with the uniform permeability of the membranes to objects with the absolute
value of the sum of electrical charges being equal to 1. The formal definition of
molecular systems would also allow us to consider other objects than strings,
e.g., graphs and the corresponding cutting and recombination rules (see [7]). A
thorough investigation of the generative power of such variants of GhP-systems
and their complexity for solving special problems remains for future research.

Further interesting features for P-systems can be found, for example, in [3],
where the communication of objects is controlled by the concentration of the
objects, and in [11], where the communication through membranes depends on
the electrical charges of the atomic objects and the membranes. In [12], Gheorghe
Păun gives an overview on the actual bibliography of P-systems and discusses a
list of interesting problems related with membrane computing.

We finish with some open problems arising from the results discussed in this
paper:

– Consider the simple GhP-systems of type CR using only recombination rules
especially as in Lemmas 2 and 3:
1. We possibly may have the chance to obtain an infinite non-collapsing

hierarchy (compare with problem “m” in [12]) with respect to n
in the membrane structure [0[1]1...[n]n]0. The family of languages
{wwr | w ∈ Σ∗} (where wr denotes the mirror image of w) may be a
candidate to constitute such a hierarchy with respect to the number of
symbols in Σ.

2. For the simplest membrane structure [0]0 we may obtain an infinite non-
collapsing hierarchy with respect to the number of markers [+k] , [−k].

– Can the complexity (the number of membranes) of the GhP-systems of type
CR constructed in the proof of Theorem 4 be reduced without increasing
the number of markers?

– Can the the number of markers of the GhP-systems of type H constructed
in the proof of Theorem 5 be reduced?



144 R. Freund and F. Freund

Acknowledgements. We gratefully acknowledge all the fruitful and interesting
discussions with Gheorghe Păun concerning his brilliant ideas for various models
of P-systems.

References

1. G. Berry and G. Boudol, The chemical abstract machine, Theoretical Computer
Science 96 (1992), pp. 217-248.

2. J. Dassow and Gh. Păun, On the power of membrane computing, JUCS 5 (2)
(1999), pp. 33-49.

3. J. Dassow and Gh. Păun, Concentration controlled P systems, submitted, 1999.
4. R. Freund, Generalized P-systems, FCT’99, Iasi, Romania, September 1999.
5. R. Freund, Generalized P-systems with splicing and cutting/recombination,

WFLA’99, Iasi, Romania, September 1999.
6. R. Freund and F. Freund, Test tube systems: When two tubes are enough, DLT’99,

Aachen, Germany, July 1999.
7. R. Freund and F. Freund, Cutting and recombination of graphs, AFL’99, Hungary,

August 1999.
8. R. Freund and F. Freund, Generalized homegeneous P-systems, Research Report

TU Wien, Austria, 2000.
9. Gh. Păun, Computing with membranes, Journal of Computer and System Sciences,

61, 1 (2000), pp. 108-143; and TUCS Research Report No. 208 (Nov. 1998).
10. Gh. Păun, Computing with membranes: an introduction, Bulletin EATCS 67 (Febr.

1999), pp. 139-152.
11. Gh. Păun, Computing with membranes - a variant: P systems with polarized mem-

branes, International Journal of Foundations of Computer Science, 11, 1 (2000),
pp. 167-182; and Auckland University, CDMTCS Report No. 098, 1999.

12. Gh. Păun, Computing with membranes (P systems): Twenty-six research topics,
Auckland University, CDMTCS Report No. 119, 2000.

13. Gh. Păun, G. Rozenberg, and A. Salomaa, DNA Computing: New Computing
Paradigms (Springer-Verlag, Berlin, 1998).

14. Gh. Păun, G. Rozenberg, and A. Salomaa, Membrane computing with external
output, Fundamenta Informaticae, 41, 3 (2000) pp. 259-266; and TUCS Research
Report No. 218 (Dec. 1998).

15. Gh. Păun and T. Yokomori, Membrane computing based on splicing, Preliminary
Proc. Fitfth Intern. Meeting on DNA Based Computers (E. Winfree and D. Gifford,
eds.), MIT, June 1999, pp. 213-227.

16. Gh. Păun and T. Yokomori, Simulating H systems by P systems, JUCS 6 (2)
(2000), pp. 178-193.

17. I. Petre, A normal form for P-systems, Bulletin EATCS 67 (Febr. 1999), pp. 165-
172.

18. D. Pixton, Splicing in abstract families of languages, Theoretical Computer Sci-
ence 234 (2000), pp. 135-166.



Computationally Inspired Biotechnologies:
Improved DNA Synthesis and Associative
Search Using Error-Correcting Codes and

Vector-Quantization?

John H. Reif?? and Thomas H. LaBean

Department of Computer Science, Duke University

Abstract. The main theme of this paper is to take inspiration from
methods used in computer science and related disciplines, and to apply
these to develop improved biotechnology. In particular, our proposed
improvements are made by adapting various information theoretic coding
techniques which originate in computational and information processing
disciplines, but which we re-tailor to work in the biotechnology context.
(a) We apply Error-Correcting Codes, developed to correct transmission
errors in electronic media, to decrease (in certain contexts, optimally)
error rates in optically-addressed DNA synthesis (e.g., of DNA chips).
(b) We apply Vector-Quantization (VQ) Coding techniques (which were
previously used to cluster, quantize, and compress data such as speech
and images) to improve I/O rates (in certain contexts, optimally) for
transformation of electronic data to and from DNA with bounded error.
(c) We also apply VQ Coding techniques, some of which hierarchically
cluster the data, to improve associative search in DNA databases by re-
ducing the problem to that of exact affinity separation. These improve-
ments in biotechnology appear to have some general applicability beyond
biomolecular computing.
As a motivating example, this paper improves biotechnology methods
to do associative search in DNA databases. Baum [B95] previously pro-
posed the use of biotechnology affinity methods (DNA annealing) to do
massively parallel associative search in large databases encoded as DNA
strands, but many remaining issues were not developed. Using in part
our improved biotechnology techniques based on Error-Correction and
VQ Coding, we develop detailed procedures for the following tasks:
(i) The database may initially be in conventional (electronic, magnetic,
or optical) media, rather than the form of DNA strands. For input and
output (I/O) to and from conventional media, we apply DNA chip tech-
nology improved by Error-Correction and VQ Coding methods for error-
correction and compression.

? A postscript version of this paper is at URL
http://www.cs.duke.edu/∼reif/paper/Error-Restore/Error-Restore.ps.

?? Surface address: Department of Computer Science, Duke University, Box 90129, Dur-
ham, NC 27708-0129. E-mail: reif@cs.duke.edu. Supported by Grants NSF/DARPA
CCR-9725021, CCR-96-33567, NSF IRI- 9619647 and EIA-0086015, ARO contract
DAAH-04-96-1-0448, and ONR contract N00014-99-1-0406.

A. Condon (Ed.): DNA 2000, LNCS 2054, pp. 145–172, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



146 J.H. Reif and T.H. LaBean

(ii) The query may not be an exact match or even partial match with
any data in the database, but since DNA annealing affinity methods work
best for these cases, we apply various VQ Coding methods for refining
the associative search to exact matches.
(iii) We also briefly discuss how to extend associative search queries in
DNA databases to more sophisticated hybrid queries that include also
Boolean formula conditionals with a bounded number of Boolean vari-
ables, by combining our methods for DNA associative search with known
BMC methods for solving small size SAT problems. For example, these
extended queries could be executed on natural DNA strands (e.g., from
blood or other body tissues) which are appended with DNA words encod-
ing binary information about each strand, and the appended information
could consist of the social security number of the person whose DNA was
sampled, cell type, the date, further medical data, etc.

1 Introduction

1.1 Recombinant DNA Technology

DNA as a Storage Media. Recall that DNA is a linear molecule composed
of 4 types of nucleotides, and thus provides a base 4 data encoding. DNA is an
appealing media for data storage due to the very large amounts of data that
can be stored in compact volume. It vastly exceeds the storage capacities of con-
ventional electronic, magnetic, or even optical media. A gram of DNA contains
about 1021 DNA bases, or about 108 terabytes. Hence, a few tens of grams of
DNA may have the potential of storing all the human-made data currently stored
in the world. DNA is about 108 times more compact than other storage media
currently being used is. Most recombinant DNA techniques can be applied at
concentrations of about 5 grams of DNA per liter of water.
Recombinant DNA Technology. Biotechnological methods, which are collec-
tively known as recombinant DNA technology, have been developed for a wide
class of operations on DNA strands. These operations include site-specific edits
and splicing operations. In the DNA annealing operation, two single strands of
DNA (with opposite 3′ to 5′ orientation) combine into a doubly stranded DNA if
the DNA bases of these sequence are complementary (or nearly complementary)
to each other. DNA separation techniques [KG97] make use of annealing [HG97]
to separate out DNA strands that contain particular subsequences; typically
one set of DNA strands is surface attached (e.g. to streptavidin-coated para-
magnetic beads) and the affinity separation operates on another set of single
stranded DNA which anneal to the affixed DNA. PCR [B94, R94] is a recom-
binant DNA operation that uses DNA annealing to amplifying the frequency of
those DNA strands that have a particular chosen sequence.



Computationally Inspired Biotechnologies 147

1.2 Computationally Inspired Biotechnologies

Adleman has suggested the term Computationally Inspired Molecular Technol-
ogy to describe molecular methods that are inspired by computational methods.
While many of the more general applications to Molecular Technology are out-
side the scope of this paper, it is nevertheless a visionary concept which seems
destined to have major impact

This paper has a narrower focus to biotechnology. The major theme of this
paper is that we may provide improvements to biotechnology using methodolo-
gies similar to those developed by computer scientists. A field we term Compu-
tationally Inspired Biotechnology encompasses biotechnology methods that are
inspired by computational methods. For example, the inventor of PCR has stated
he was inspired by the technique of recursive programming in his discovery of
PCR, which operates by a recursive doubling of concentrations of selected DNA
strands.

As we shall see, our improvements in biotechnology will be made by adapting
error-resilient and optimum rate techniques, which originate in computational
disciplines.
A Motivating Example: Massively Parallel I/O using DNA Chips. For
example, let us consider the conversion of a database from conventional electronic
media to a “wet” database of DNA strands in solution or on solid support. To
do these transformations of the database and queries, we investigate the use of
a promising new biotechnology; namely that of DNA chips [FRP+91,DDSPL+
93,PSS+94, BKH96, CYH+96], which provide the ability of highly parallel in-
put/output over 2D surfaces. By use of photosensitive DNA-on-a-chip technol-
ogy, 2D optical input is converted to DNA strands encoding the input data.
If the database was initially in conventional electronic form, it can easily be
displayed at a very high rate as a series of images in 2D optical form, and in
principle parallel arrays of DNA chips can be used to synthesize strands of DNA
each encoding the database elements. Furthermore, DNA chips can also be used
for 2D optical output: using hybridization at the sites with fluorescent labeled
DNA, the output can be read as a 2D image. (See Figure 1.)

DNA Chip

                                                        DNA
                                               Hybridization

  DNA Chip Array

                                      

Fig. 1. DNA Chips and DNA Chip Arrays.

Each DNA chip can be optically addressed at up to 105 sites (and poten-
tially many millions of sites in the immediate future), and each such chip is



148 J.H. Reif and T.H. LaBean

small enough so that arrays of up to a few thousand chips can be placed on a 2D
array compact enough so all chips can be addressed by a single optical system.
Hence there is the potential of parallel synthesis of DNA at 108 sites or more
(and potentially many billions of sites in the immediate future). Thus, this mas-
sively parallel DNA synthesis for input (and affinity detection of DNA strands
for output) has a potential for achieving a rate of input/output to convention
optical/electronic media in the order of gigabit rates or more. However, this all
is without consideration of error rates, which are considerable, and represent the
bulk of the technical challenge in this case. The most common errors in optically
addressed synthesis of DNA are premature truncations of the growing strand and
base deletions, although insertions and substitutions are also possible. (There are
also a variety of other sources for further errors, such as differential sequence-
dependant binding and secondary structure of the DNA strands.) The error rate
in optically addressed DNA synthesis methods used for DNA chips is roughly
4% to 8% per base [MBD+97]. This corresponds to an expected error in every
12 to 25 base pairs.

The commercial chips such as Affymetrix utilize only a fraction of the 105

or so sites that are in principle optically addressable; the current maximum
is about 42, 000 sites, but the typical DNA chip uses only about 7, 000 sites
(see Table 1 of [LFGL99]). Due to the proprietary nature of the Affymetrix
technology, it is not entirely clear what their synthesis error rates are for each
type for possible error. For the technology at its current scale of just a few tens
of thousands of sites, and with most strands under 20 base pairs, the synthesis
error rate is not likely to be the most dominant limiting factor, and it is only
one of a number of other factors that can impact the technology at the current
scale. Nevertheless, methods for decreasing error rates due to optically addressed
base synthesis might well impact future scalability of DNA chip technology by
facilitating increased numbers of addressable sites and increased strand length.

1.3 Applications to Biomolecular Computing

Biomolecular Computing (BMC) makes use of biotechnology to do computation.
Given the extreme compactness of DNA and the ability via recombinant DNA
technology to execute operations on vast numbers of DNA strands in massively
parallel fashion, BMC has impressive potential for molecular-scale computation.
We consider two of the greatest challenges for BMC:
(a) Error-Resilient, High Rate I/O. Although Error-resilient techniques
for BMC have been developed in [BL95a, CW97, DMGFS98, DMRGF+97, and
DHS97], a key issue we consider is the transformation of inputs, originally in
conventional electronic media, into sequences of DNA. Assuming the inputs are
static, the conversion needs only to be done one time, but this still may be a
nontrivial task. The application of DNA chips for I/O in Biomolecular Com-
puting may be limited by their relatively high error rates. In this use of DNA



Computationally Inspired Biotechnologies 149

chips, each of the DNA strands synthesized may be quite long (likely well over
25 bases per strand), so as to transmit significant amounts of information, and
then the majority of such strands can be expected to have at least one synthesis
error. To address the synthesis error rate, we will apply Error-Correcting Coding
methods.
(b) Scalable BMC Applications. Another key near term challenge [R96] in
the field of BMC is to find applications of this technology that have the possibility
of commercial utility in the near term, say in the next five years, and further-
more their resource requirements (number of recombinant DNA steps, volume
of test tubes, etc.) should scale well so that future large scale demonstrations
will be feasible. To date, there have been a number of BMC demonstrations
and proposals for the solution of small size combinatorial search problems using
separation techniques [A94, L95, ARRW96, BDL95, RWBCG+96] and surfaced
based chemistry [CRFCC+96, LGCCL+96, BCGT96, CCCFF+97, LTCSC97,
LFW+98, WQF+98]. But these applications are not scalable, since the vol-
ume grows exponentially with the problem size. Recently proposed applications
of BMC that appear to be scalable include methods for hiding DNA [CRB99]
and for encrypting DNA [GLR99], doing neural network learning [MYP98], and
possibly certain other massively parallel computations [R95, GR98a], but their
commercial utility may not be in the immediate future.
DNA Associative Search: A Scalable BMC Application. This paper takes
associative search as our motivating example of a scalable BMC application, and
provides solutions to the challenges listed above.

1.4 Organization of This Paper

In Section 1 we introduced recombinant DNA technology and the concept of com-
putationally inspired biotechnologies In Sections 2 and 3 we present some coding
methods used in computer science, namely Error-Correction coding and also Vec-
tor Quantization (VQ), that can be applied to improve biotechnology methods
for error-resilient I/O and also optimum rate I/O btween DNA databases and
conventional media. In Section 4 we introduce our motivating example appli-
cation: associative search and describe how VQ can be used to improve DNA
associative search by to refing the associative search to exact matches. In Section
5 we briefly present methods for extending associative search queries to sophisti-
cated hybrid queries that include also Boolean formula conditionals. In Section
6 we conclude the paper.

2 Error-Correction Methods from CS Adapted to
Biotechnology

This section proposes experiment methods for repairing faulty oligonucleotides
contained within surface-bound probe arrays. We propose the use of Error-



150 J.H. Reif and T.H. LaBean

Correction DNA strands specifically designed to bind both error-containing and
error-free probes. (Error-Correction strands can also act as templates for primer
extension reactions, which will append error-free code words onto the 5’ ends of
all probes on the chip.) Our Error-Correction strands are composed of two seg-
ments: an error-containing portion (the suffix) designed to be complementary to
the immobilized probe sequences and biased in its synthesis to contain similar
types and quantities of errors as the faulty-probe sequence; and an error-free
portion (the prefix) which will provide a error-free probe (or can be used as a
template for primer extension to create a error-free probe). After hybridization
with the Error-correction strands, the resulting duplex probes contain single-
stranded overhangs with the error-free portion. (There is also evidence [BSS+94]
that duplex probes containing single-stranded overhangs are substantially less
error-prone than simple single-stranded probes, due to stacking interactions that
provide increased stringency.) The design of these Error-Correction DNA strands
is provided by information theoretic error-correction methods.

2.1 Known Error-Correction Methods

We will take inspiration from information theoretic error-correction methods (see
Shannon [S48,S49], Hamming [H50], Berlekamp [B68], Pless [P82], Lint [L71])
used in computer science, with the goal of developing similar methods for various
biotechnology applications.

Distance
d/ 2

Map to
Code Word

Code
Word

Another
Code Word

Error
Vector

Distance d

Fig. 2. Error-Correction by Mapping to
Nearest Code Word.

ACGT

ACTT ACCT
ACAT

TCGT
GCGT

CCGT

ACGG

ACGC

ACGA

ATGT

AGGT

AAGT

Fig. 3. DNA sequences of generalized
Hamming distance 1 from ACGT.

These error-correction methods make use of a set C of code words. When
code words are altered by errors (during transmission or storage), they can be
mapped back into the original set of error-free code words by an Error-Correction
procedure. (See Figure 2.) In one of the simplest of these coding schemes, to
encode each N−vector X whose elements range over 0, 1, ..., b − 1, we use a
code word C(X) consisting of a N ′−vector whose elements range over the same
domain. In general, N ′ is larger than N ; that is we are increasing the length of
the encoding to gain error-resiliency. The distance metric is defined so that the
generalized Hamming distance between two vectors is the number of elements



Computationally Inspired Biotechnologies 151

where they differ. The code words are chosen so that there is at least distance
d = N ′ − N between each pair of code words. (See Figure 3.)

The Maximum Likelihood Error-Correction procedure simply maps each N’-
vector to a code word that is closest in distance. Note that a restoration error
does not occur as long as a vector is perturbed by at most d’ errors, where d’ is
the floor of (the largest integer less than or equal to) d/2. The restoration error
probability r is the likelihood that this Error-Correction procedure results in an
error.

In the Boolean case (where the elements of vectors are 0 or 1), the error model
(known as a binary symmetric channel) makes the assumption that each bit has a
uniform, independent probability p of being flipped. In this case, the Hamming
code [H50] provides an asymptotically optimum restoration error probability
for any choice of the parameters N , d = N ′ − N , and p. In the more general
case considered here, where the vector elements range over 0, 1, ..., b − 1, the
error model provides an independent probability p of any element x of a vector
being replaced by an element of 0, 1, ...b − 1 − x (note that the choice of the
replacement element due to an error does not concern us, since that does not
change the generalized Hamming distance).

There are known designs for sets of code words (e.g., see the Reed-Muller
and BCH codes found in the texts [P82, L71]) which provide an asymptotically
optimum restoration error probability r = r(N, d, p, b) for any choice of the
parameters N, d, p, and b. These codes have the property that, for a fixed p, there
is a constant c > 0 such that the restoration error probability r can be made
an inverse exponential function 2−cN of N , and simultaneously, d = N ′ − N

can be made to asymptotically approach 0 as N grows1. Our goal now is to
take inspiration from this error-correction techniques and apply the concepts to
improved biotechnology.

2.2 Applying Error-Correction Methods to Biotechnology

Recall that a multiset is a collection of items with possible repeats. Let the
redundancy of a multiset S be the minimum number of repeats of any element
of S. In the following, we assume multisets of DNA strands with very large
redundancy, say at least 103. Let us consider the case where we attempt chemical
synthesis of a multiset S of single stranded DNA strands (the strands might be
on a DNA chip or on other solid support), where each of the strands has the same
total number of bases. We assume that the chemical synthesis has errors. Let us
1 Similar results also hold for much more general channel error models, including

discrete memoryless stationary processes. There are also more sophisticated coding
methods known, for more complex models with non-uniform errors and also non-
independent errors. For example, “burst” errors correspond to correlations of errors
among consecutive elements, which necessitate modified methods for codings and
the Error-Correction process.



152 J.H. Reif and T.H. LaBean

suppose each base is synthesized within each of these strands with a uniform,
independent probability p of a deletion error. We will approximately model these
base deletions by replacements with other distinct bases. (To justify this, note
that in the annealing process between two near-complementary strands s, s′,
a base deletion in strand s generally would result in a local DNA base bulge
in strand s′. (See again Figure 3. Short stretches of double-stranded DNA are
depicted showing: a) exact Watson-Crick(WC) complementary matching; b) a
mismatch (T-T) imbedded within a WC match region; and c) a WC match
region surrounding a bulged base (T). The bulged base can be described as a
deletion from the left-hand strand or an insertion into the right-hand strand.)
The effect of this base bulge requires a very complicated energetic model; for
simplicity, we approximate the effect of this base bulge to first order by a same
length sequence of base mismatches, although these are not strictly energetically
equivalent.)

A
C
G
T
A
C

T
G
C
T
T
G

A
C
G
T
A
C

T
G
C
A
T
G

A
C
G
T
A
C

T
G
C
A
T
G

T

a             b               c

Fig. 4. Exact and Inexact Hybridization.

   3' Original Probe     5'

   5'         Prefix                        Suffix       3'

 Biased-Error Synthesis       Error-Free

                          EC Strand
Fig. 5. EC Strand Prefix and Suffix.

Our Model for Synthesis Errors. So these synthesis errors with independent
base deletions will be approximated by an error model with a uniform, indepen-
dent probability p of base replacement (without deletion error). (See Figure 4,
which gives a 2D Projection of a local region in sequence space. Neighboring se-
quences are shown for a central tetramer (ACGT) with substitutions in the first
position to the north, second to the east, third position south, and fourth west.
Truncations, deletions and insertions are not shown.) This coincides with the
uniform, independent replacement error model described in the above Subsec-
tion 2.1. Let ERRORp(S) be the multiset resulting from the attempted synthesis
(with very high redundancy) of each of the single stranded DNA in multiset S

with a uniform, independent probability p of base error. Now our challenge is
to perform a Error-Correction procedure on the strands by purely biotechnol-
ogy (i.e., recombinant DNA operations) means. In context of our problem, the
coding theory parameters N, d, p, and b are set so:

– N is the number of bases in each of the strands of S,
– b = 4 is the element domain size, since there are 4 DNA bases,
– p is given by the error model, and
– d is the minimum distance between each of the code words, and is a para-

meter that can be set to adjust the restoration error probability.



Computationally Inspired Biotechnologies 153

We choose a known design [P82, L71] for a set C of code words which provides an
asymptotically optimum restoration error probability r = r(N, d, p, 4) for choice
of the parameters N, d, p. Our goal is to synthesize a multiset S of single stranded
DNA, where each strand has N bases. For each strand s in S, we will define a
code word strand C(s) consisting of a single stranded DNA which gives the code
word for the single stranded DNA s. Let C(S) be the multiset of strands which
are code word strands of the strands in S. We assume the encoding provides a
restoration error probability r = r(N, d, p, 4) for choice of the parameters N, d, p.
There are two possible cases we consider:

(a) If S has the property that for each pair of strands in S differ by at least d

bases (for example, we might expect this to be the case when S consists of a set
of DNA words used in a DNA computation, and these DNA words were chosen
so that all distinct pairs of these DNA words have low hybridization affinities),
then we choose our code words C(S) to be a set of DNA words with a 1 to
1 mapping C from S to C(S), such that the elements of C(S) all have length
N ′ = N , and each s in S has low annealing affinity with the complement of C(s)
(note that this latter requirement implies that we can not set C(s) = s).

(b) Otherwise, we choose a known asymptotically optimum design [P82, L71]
for the set C of code words, where for each s in S, code word strand C(s) has
N ′ = N+d bases and moreover, s has low annealing affinity with the complement
of C(s). Since N ′ is larger than N , we are in this case increasing the length of
the encoding to gain error-resiliency.

In either case, we now execute the following steps:

[0] Initialization. We first construct separately (by methods described in
Subsection 2.3) a multiset of single stranded DNA strands, which we will call
Error-Correction (EC) strands. (See Figure 5.) Each EC strand consists (in the
5′ to 3′ direction) of the prefix portion of the strand followed by the suffix portion
of the strand. The prefix portion of the EC strand will be the result of synthesis
of the complement of code word C(s), with a uniform, independent probability
p of DNA base synthesis errors. (Note that the synthesis of the prefix portion of
the EC strand has the same error model as the synthesis of the code word C(s).)
The suffix portion of each EC strand will be the result NEW(s) of synthesis of
s with a much lower error rate: with a probability q (where q << p) of even a
single DNA base synthesis error on that suffix.

[1] Rather than directly attempt chemical synthesis of multiset S, where each
strand has N bases, we instead do chemical synthesis with this error model
of the multiset C(S) code word strands, resulting in a synthesized multiset
ERRORp(C(S)). Without loss of generality, we assume that these synthesized
strands of C(S) run from their attached 3′ end to their unattached 5′ end (how-
ever, note that we use the standard convention in our figures with arrows directed
on the strands from the 5′ end to the 3′ end).



154 J.H. Reif and T.H. LaBean

[2] Then we combine the EC strands with the DNA strands synthesized with
this error model, and allow for hybridization. The hybridization products include
doubly stranded DNA complexes with elements of ERRORp(S) hybridized with
the corresponding prefix of the EC strands, with single stranded overhangs con-
sisting of the suffix portion of the EC strands. (See Figure 6.)
In summary, we begin with the error-prone synthesis of a code word C(s), and
this results in a ssDNA overhang NEW(s). Let S∗ be the multiset of these single
stranded overhangs NEW(s), for each s in S. We say S∗ approximates S with
fidelity f if f lower bounds the probability that NEW(s) = s, for each s in S.
A precise statement of our result. We now show:
Theorem 1. If we employ a error-correction code with restoration error prob-
ability r = r(N, d, p, 4), then S∗ approximates S with fidelity (1 − q)(1 − r)2 ≥
1 − 2r − q.
Proof: Suppose we attempt synthesis of a strand s in S in this error model.
With likelihood 1 − r, this yields a strand s′ with at most d errors, where d is
the floor of (N ′ − N)/2. Further suppose that the prefix portion of some EC
strand is complementary to s′, and anneals to a strand s′. The likelihood that
that EC strand was perturbed by less than d errors, also has likelihood 1−r, and
conditional on this event, the further likelihood that the suffix NEW(s) of that
EC strand is s, is 1−q. Hence, the resulting single stranded overhang, consisting
of the suffix portion NEW(s) of that EC strand, is the strand s, with likelihood
given by (1 − q)(1 − r)2, which is at least 1 − 2r − q. QED

Original Error-Containing

Probe Array

Error-Free

Probe Array

Error-Correctio n

Strands Bound

Primer

Extension

Fig. 6. Steps used to Error-Correct
Synthesized DNA Strands, Result-
ing in Overhangs.

  5'   Original Probe  Error-Corrected  3'

  3'         Suffix                      Prefix         5'

 Biased-Error Synthesis      Error-Free

                          EC' StrandFig. 7. An Alternative Method for
Extension to Error-Free Probe Us-
ing Primer Extension on the EC’
Strand.

Alternatively, we may instead wish to extend the original strands (say in the
5′ to 3′ direction) of S, so that the strand extending each of the original strands
corresponds to its error-free codeword. In this case, we need to assume that
these synthesized strands instead run from an attached 5′ end to an unattached
3′ end. We also need to slightly redefine the EC strands (see step [1’]), and apply
a well-known recombinant DNA operation known as primer-extension (e.g., see
its previous use by [OGB97] for DNA computation). In this case, we define the
code words so that the complement of s (rather than s, as in the case above)
has low annealing affinity with the complement of C(s).

We now execute the following modified steps (see Figure 8):



Computationally Inspired Biotechnologies 155

Original Error-Containing
           Probe Array

 Error-Free
Probe Array

Error-Correction
Strands Bound

  Primer
Extension

Fig. 8. Steps used to Error-Correct Syn-
thesized DNA Strands, Resulting in Strand
Extension.

Biased-Error
Synt hesis

Error-Free
DNA strand S

Synthesized
Error-Containing
DNA strand

Fig. 9. Biased-Error DNA Synthesis.

[0’] We first construct separately (again, by methods described in Subsection
2.3) a multiset EC’ of single stranded DNA strands, similar to the previously
defined EC strands, except the suffix portion at the 5′ end of the EC’ strand
is the complement of a possible result of synthesis of code word C(s) (with the
same synthesis error model), but the prefix portion at the 3′ end of each EC
strand is the complement to a strand s in S.
[1’] This step is the same as step [1] above.
[2’] This step is the same as step [2] above, except we anneal using the multiset
EC’ instead of multiset EC. This results in the hybridization products that in-
clude doubly stranded DNA complexes with elements of ERRORp(S) hybridized
with the corresponding suffix of the EC strands, with single stranded overhangs
consisting of the prefix portion of the EC’ strands.
[3’] We then apply primer-extension. These single stranded overhangs provide
templates used in the primer-extension procedure that provides extension of the
strands of ERRORp(S) with the restored codewords, as intended.
Since this modified method is identical to the original one, except that comple-
ments are synthesized, the fidelity is the same as stated in Theorem 1, and in
particular, the fidelity that these single stranded overhangs approximate multiset
S is again lower bounded by 1 − 2r − q.

2.3 Synthesizing the EC Strands

The remaining problem is to synthesize the EC strands as defined above in
Section 2.2 (synthesis of the EC’ strands is similar). This turns out to be the
most interesting and technically demanding of the steps. (See Figure 9.) We
consider a variety of methods:
(a) Direct synthesis and purification of Error-Correction Strands.
Given detailed knowledge of the types and rates of sequence errors observed
for oligonucleotides synthesized by light-directed chemistry on 2D chips, one
could imagine constructing, by high fidelity solid-phase synthesis, a unique re-
pair strand for each of the possible error sequences which then maps the error
back to the intended probe sequence, as described above. This could be pro-
hibitively expensive due to the large number of strands required. Nevertheless,



156 J.H. Reif and T.H. LaBean

this could turn out to be the method of choice in the case of small-scale appli-
cations.
(b) Biased-Error Chemical Synthesis of Error-Correction Strands.
Here combinatorial synthesis is used for reducing the total number of separate
syntheses required by simultaneously producing EC strands for a large number of
possible flawed probes. Here the prefix portions of the EC strands are synthesized
with errors in a manner mimicking the error model for the original probe strands,
but where the suffix portion of the EC strands are synthesized with the lowest
possible error rate. We propose the use of high-sequence-fidelity oligonucleotides
produced by automated synthesis for the repair of errors incorporated during
the production of probes by light-directed synthesis of addressable probe arrays.
We will go from an expected error rate of 4−8% to something less than 1%. The
proposed method would require a total number of syntheses and purifications
equal to the intended diversity of the original probe array; while this may seem
a daunting task, the payoff in error reduction and the corresponding increase
in chip efficiency may be required for accurate I/O on critical computational or
associative search applications.

Current protocols for chemical synthesis of oligonucleotides have been op-
timized to minimize sequence errors. The coupling efficiency for light-directed
synthesis of DNA on planar solids are various estimated to be between 92%
and 96% [MBD97, MH98] per cycle, compared to 98 − 99% for conventional
synthesis using acid cleavage of methoxytrityl protecting groups on the same
planar supports [MH98]. Higher coupling yields (> 99%) are routinely observed
for automated, solid-phase oligonucleotide synthesis. The most commonly used
method is the phosphite triester (phosphoramidite) procedure as modified by
Beaucage and Caruthers [BC81]. The 3′-hydroxyl group of the first nucleotide
is immobilized on a solid support (either controlled pore glass or a polystyrene-
copolymer). The chain grows by the nucleophilic attack of the 5′-hydroxyl of the
immobilized oligo on an activated 3′-phosphoramidite moiety of a 5′-protected
building block. Reactive chemical groups on the bases are protected with vari-
ous organic groups which are removed by treatment with ammonium hydroxide
following the final coupling step. The reactive phosphates of the DNA phospho-
diester backbone are protected throughout synthesis with -cyanoethyl which is
also removed in the final ammonia deprotection step.

A quick review of the steps involved in chemical DNA synthesis will assist our
discussion. Each cycle of chain elongation requires four steps: 1) deprotection,
2) coupling, 3) capping, 4) oxidation. Deprotection involves the removal of the
dimethoxytrityl chemical-protecting group from the 5′-hydroxyl of the previous
nucleotide. Trichloroacetic acid (1 − 3% w/v) is used in dichloromethane; the
reaction requires less than one minute. Coupling provides for addition of the
next nucleotide to the growing polymer. Excess soluble protected nucleosides
and coupling reagent drive the reaction nearly to completion. Phosphoramidites



Computationally Inspired Biotechnologies 157

can not react directly with a free 5′-hydroxyl and must first be activated by
a weak base like tetrazole. Tetrazole protonates the dialkyamino group of the
phosphoramidite moiety and become a nucleophile, generating a very reactive
tetrazolophosphane intermediate. Coupling reaction with these compounds is
very fast (less than 2 minutes) and nearly quantitative. Capping is used to elimi-
nate free 5′-hydroxyls which failed to react in the coupling step, thus capping de-
creases the frequency of sequence deletion products in the final oligo, converting
them instead into truncations. Products of the capping reaction are terminated
waste products and are no longer active during the remainder of synthesis. Acetic
anhydride/N-methylimidazole is generally used as the capping reagent. Oxida-
tion of the newly formed phosphite internucleotide linkage is unstable and must
be oxidized to the more stable phosphate before chain extension can proceed.
Iodine in tetrahydrofuran is a mild oxidizer with water as the oxygen donor.
Reaction occurs within ≈ 30 seconds in very high yield.

Synthesis errors can occur at each of the steps in each cycle of the synthesis.
The rates of different varieties of errors can be tuned in order to prepare oligos
complementary to the probe libraries and containing, as an ensemble average,
errors which match those spontaneously created in the light-directed chip syn-
thesis. In order to achieve this tuning, very good data will be needed as to the
types and frequencies of errors within the immobilized probes.
• Tuning the rate of truncation errors: Truncations occur when the de-
protection step succeeds, the coupling step fails, and the capping step succeeds.
Truncations on the chip can be converted into deletions if the capping step is
eliminated. Truncations in the EC strands can be increased to match the chip
rate by decreasing the efficiency of the coupling reaction (decreasing reaction
time or by decreasing the concentrations of either the phosphoramidite or the
activator (tetrazole/water). No changes are needed in the other steps.
• Tuning the rate of deletion errors: Deletion errors can occur if the de-
protection step fails, or when it succeeds but the coupling and capping steps
simultaneously fail. The easiest way to increase the rate of deletions on the EC
strands is to decrease the efficiency of the deprotection step, either by decreasing
the acid concentration or the reaction time or possibly both together.
• Tuning the rate of substitution errors: Substitution errors can be most
easily incorporated into EC strands by spiking the nucleoside phosphoramidite
stock solutions with an appropriate amount of contaminating phosphoramidite
from the other nucleosides. For example, if a substitution rate of 1observed for
sites meant to be base G, then the G-monomer can be deliberately contaminated
with 1% A-monomer. Reactivities of the phosphoramidites vary slightly with
base identity, but at this stage, these differences will be ignored. We must also
note that we will be synthesizing the complement of the error-containing strands
and so must spike with T-monomer when we expect to basepair with erroneous
A, etc.



158 J.H. Reif and T.H. LaBean

(c) Other Methods for Generating Diverse Prefixes for EC Strands.
The relative simplicity of the biased-error chemical synthesis approach makes it
the most appealing of methods for generating diverse prefixes for EC strands.
However, for purposes of completeness, it should also be mentioned that there
are a number of other possible methods.
Mutagenisis via Polymerase Enzymes. Sequence diversity can be generated
during enzymatic polymerization of DNA by the use of polymerase enzymes and
conditions which favor the introduction of mutations to the newly synthesized
strands. Error rates of DNA polymerase enzymes vary from about one per mil-
lion bases for high fidelity, proof-reading enzyme, to nearly one per hundred
bases for highly mutagenic polymerization. In general the nature of errors may
differ between chemical and enzymatic DNA synthesis, so biased-error chemical
synthesis would most likely provide EC strands which most closely match the
error profiles for probe DNA synthesized on a chip. Other mutagenisis Methods
used for more general computations are given in [KG98].
DNA Self Assembly. It is also, in principle, possible to construct EC strands
using a self-assembly method [R97, WLW+98, WYS96, LYK+00, LWR99,
RLS00, MLR+00] involving a universal base pairing nucleotide like inosine to
generate diverse populations of prefixes.

3 Adapting to Biotechnology VQ Methods Used in
Computer Science

3.1 VQ Coding Methods Used in Computer Science

We next consider information theoretic Vector Quantization (VQ) Coding meth-
ods (see Gray [G90], Gersho, Gallager, and Gray [GGG91]) used in computer
science for compressing data (such as speech and images) within bounded error.
Again let V = Bn be the set of all possible n-vectors over domain B of consecu-
tive integers, and consider a database of vectors in V . VQ methods (which are
also known as source coding and clustering methods) partition the vectors of the
database into clusters of vectors, where each cluster is a subset of the database
vectors. For each cluster G, the center vector, which may not be originally in the
database of vectors, is the average of all the vectors of the cluster. The radius of
a cluster is the maximum distance between any vector of the cluster to the cen-
ter vector. There are well-known algorithms (Jain, Dubes [JD88]) which cluster
the vectors of the database so the cluster radius is minimized and the average
number of vectors in each cluster is bounded by a cluster size parameter m.

3.2 Applying VQ Coding Methods to Increase DNA Chip I/O

The clusters are enumerated and each assigned a cluster index, which is an
integer that uniquely identifies the cluster. The number of clusters is a multiple



Computationally Inspired Biotechnologies 159

cluster
   radius

center point

Data Base
vector

Fig. 10. A Vector Quantization Cluster.

Match
with
query

query
vector

Data Base
vector

Map to
cent er point

center
point

Map to
cent er point

Fig. 11. Mapping the Query Vector to the
Center of a Nearby Cluster.

1/m of the original number of vectors of the database. Within a given cluster,
each vector is approximated by the center point of the cluster and the code for
a vector is an index to the cluster the vector is in. (See Figures 10 and 11.)
Software for this process of VQ clustering has been developed by Eve Riskin’s
group at the University of Washington and can be obtained from their FTP site
(http://isdl.ee.washington.edu/compression/code/ ).

Note that in contrast to Error-Correcting codes, the VQ coding induces er-
rors, which are bounded by the choice of the clusters and can be tuned by setting
the parameter m. For certain statistical source models for the data, for example
memoryless or finite-state stationary processes (see Gray [G90], p 44), the re-
sulting data-rate/distortion of VQ coding has been shown to be asymptotically
optimal. However, natural data sources such as speech, images, and natural DNA
can not be well modeled as memoryless or finite-state stationary processes (this
seems to be related to the fact that speech and image data and also natural
DNA [GT94, LY97, NW99] are known to be relatively uncompressible if it is
compressed without errors e.g., via LZ compression [CT 91]), and so the perfor-
mance of VQ coding on these data sources must be judged by empirical testing
rather than by precise formulas. Extensive empirical testing of VQ coding (see
Gray [G90], Gersho, Gallager, and Gray [GGG91]), has shown it to provide high
factors of compression for many types of natural data, for example approximately
20 for speech and 30 for images, without much noticeable degradation.

An immediate application of VQ data clustering techniques is to improve
I/O rates for transformation of electronic data to and from DNA with bounded
error. Recall each vector of the database assumed to have a unique identification
tag. After determining the clusters, their center points need to be transmitted
(at 1/m the cost of transmitting the entire set of the database), and each vector
v of the database is simply represented by a strand consisting of a series of DNA
words encoding the unique identification tag for v and also an identification tag
for the center point of the cluster that contains v. While for arbitrary databases,
the performance (improved I/O rate) of VQ coding can not be precisely predicted
by analytic techniques, we have noted that empirical evidence indicates it has
excellent performance if the data base consists of speech or image data. The next



160 J.H. Reif and T.H. LaBean

section discusses how to apply VQ coding methods to refine DNA associative
search to exact matches.

4 Application to Associative Search

4.1 Definition of Associative Search

Let V = Bn be the set of all possible n−vectors, whose elements range over a
set B of consecutive numbers. Given two vectors u, v in V , let distance(u, v)=
|u1 −v1|+ |u2 −v2|+ ...|un −vn|, that is, sum of absolute values of the differences
between corresponding elements of the vectors. We will use this distance metric
in the context of associative search. The associative search problem assumes a
database which is an ordered list of elements of V . In general, the input to an
associative search query consists of a query vector in V and a distance bound d.
The task is to search the entire database for those vectors (called the distance
d near-matches) of the database that are of distance at most d from the query
vector. If the distance bound is not specified, then the task is to find a vector
(called the closest match) of the database that is of smallest distance from the
query vector. (See Figure 12.) Each of the vectors of the database is assumed
to have a unique identifying index in the list comprising the database, so the
output vectors can be specified by their indices.

Dist ance <  d

Match with
query

Query
vector v

Non-Matching
Data Base vect or

Data Base
vector

Distance  > d

Fig. 12. Associative Search.

Query vector v

center vector

vector v'

< d
< 2d

radius = 2d

< d

Fig. 13. Possibility Vectors of Distance 2d
from the Query Vector.

Motivation. For example, the associative search problem arises as a basic task
in the image-processing context. The image database is assumed to be prepro-
cessed by a fixed procedure A to form an preprocessed database, which has a list
of low level image attributes for each image or sub-image (e.g., A(I) may apply
a series of linear filters or perhaps a wavelet transform to the Image I). Given an
input image I, we use A to determine the vector A(I). Then an associative search
in the preprocessed database provides the closest match to A(I). This provides
an index to that image in the image database whose attributes best match that



Computationally Inspired Biotechnologies 161

of the input image I. This motivates the development of an ultra-compact stor-
age media (e.g., DNA) that supports highly parallel associative searches within
the entire media.
Associative Search in Conventional Storage Media. In conventional
highly compact storage (e.g., RAM, magnetic or optical), the time for an as-
sociative search though the entire database grows linearly with the size of the
database. For example, the time for a sequential associative search through an
entire database of 1 terabyte stored on optical disk may take at least a few hours.
These searches can be sped up by a factor of P if P independent storage systems
are accessed in parallel, but in conventional systems this degree of parallelism P
is at most a few hundred. Image databases of size nearly 1000 terabytes (a ter-
abyte = 1012 bytes) are being constructed by NASA and other federal agencies
for space science and reconnaissance. The time for an associative search through
a database of such size might, even with this degree of parallelism, could take
at least a few days or even weeks.

4.2 DNA Annealing as an Associative Search Engine

An application previously proposed by Baum was massively parallel associative
search in large databases, who sketched some approaches using known recom-
binant DNA methods for DNA ligation affinity separation such as such the use
of streptavidin-coated paramagnetic beads. PCR also provides a way of doing
associative search, since it uses DNA annealing to amplifying the frequency of
those DNA strands that have a particular chosen sequence. (PCR is currently
used for searching within large biological databases; for example, to fingerprint
human DNA.) In the context of the DNA databases we consider, the database
might have size n = 1000 terabytes.
Scalability. This application appears to be scalable, since (i) before the max-
imum concentration is reached, the number of recombinant DNA operations
required (using PCR) for the search is independent of the size of the database
and the database can be stored without a volume expansion, and (ii) after the
maximum concentration is reached, the number of recombinant DNA operations
required for the search is at most linear in the size of the database and the
volume scales linearly.
Use of DNA Word Design in Associative Search. DNA Word Design is
the problem of designing a library of short n-mer oligonucleotide sequences (DNA
words) for information storage. These DNA words encode finite alphabets of sym-
bols by appropriately chosen sets of DNA oligonucleotide sequences. Ideally, a
good word design will maximize binding specificity, and minimize cross-binding
affinity (mismatching) and also minimize secondary structure. DNA word design
is crucial to error control in BMC, so is well studied. Some of the basic tech-
niques required by this application, such as DNA word design, have already been



162 J.H. Reif and T.H. LaBean

developed in prior work2 Each element of a vector of the database is encoded
by a DNA word. Since the number of possible values of each element is |B|, we
require a library of |B| distinct DNA words for encoding the possible elements
at a given position in the vector. To decrease associative match misalignments,
database vectors can use a distinct DNA word library of |B| distinct DNA words
(with minimal cross-binding affinity), for each of the n positions in the vector.
Each vector of the database is thus encoded by a length n sequence of these DNA
words, followed by DNA word encoding an identifying index to that vector.

4.3 Major Challenges Remaining

Nevertheless, key aspects of the associative search application needed develop-
ment, including development of methods for the following key tasks (not consid-
ered by Baum):
(a) Input and Output (I/O) to Conventional Media: The database may
initially be in conventional electronic media, rather than the form of DNA
strands. The conversion of a static database needs only to be done one time,
but then the queries also need to be so converted. Hence, the methods of Sec-
tions 2 and 3 can be used to improve I/O rates to and from conventional media,
with error-resiliency and optimal I/O rate for a given error rate.
(b) Refining the Associative Search to Exact Affinity Separation: A
key difficulty in the use of DNA annealing to do associative search is due to
the high stringency of DNA annealing. Suppose the query vector v has a partial
match with two data base vectors: (i) the vector v1 matches the query nearly
exactly except for a small number k of base mismatches scattered in the interior,
while (ii) another vector v2 matches the query exactly except for a much larger
number k′ >> k consecutive base mismatches at one end. Then v1 is a much
closer match with the query vector than v2. But if the vectors v1, v2 are encoded
as DNA strands s1, s2, respectively, and the query vector v is encoded in com-
plementary fashion as a strand s, then it is quite possible that s might anneal to
strand s1 much better that to strand s1. The reason for this discrepancy is that
in an annealing of two nearly complementary DNA strands, base mismatches
that occur in scattered fashion in the interior of the strands can be less stable
than mismatches at the end of strands. In general, in the annealing process be-
tween two single stranded DNA, the energetic properties of a set of mismatched
bases in one strand (generally results in a local DNA bulge along the mismatch
subsequence) varies dramatically depending on the position of the mismatches.
Therefore, DNA annealing does not in general provide a very uniform metric for
2 Researchers have provided DNA word designs using random strings [A94, L94], evo-

lutionary search [DMRGF+97], error-correcting codes [W98], automated constraint-
based procedures [HGL98], and other methods [A96, B96, DMGFS96, M96,
GDNMF97, JK97a].



Computationally Inspired Biotechnologies 163

associative matching in the case of partial matches. Hence methods were needed
for refining the associative search method to require only annealing on comple-
mentary sequences for which DNA annealing affinity methods work best, even
if the query in not an exact match or even partial match with any data in the
database.

4.4 Applying VQ Coding Methods to Associative Search: Refining
the Associative Search to Exact Matches

DNA annealing affinity methods work best on complementary sequences. Yet,
we need to process an associative match query, even if the query in not an exact
match or even partial match with any data in the database. We now develop two
methods for refining the associative search method to require only annealing on
exactly complementary sequences. Both methods apply VQ-Coding clustering
techniques.
(A) Associative Search with Given Match Distance. Our first method
makes the assumption that we are given a bound d on the allowed match dis-
tance (recall that this is the distance between the query vector and the selected
database vectors) for an associative match query. Using a conventional computer,
we apply known VQ-Coding clustering techniques [G90, JD88], which provide a
clustering of the database vectors so that the radius of each cluster is at most d.
Recall that the elements of each vector in V range over a finite domain B. For
each VQ cluster G of the database vectors, let v(G) be the center point of G,
and let the possibility vectors P2d(G) be the set of those vectors in V that are
within distance 2d of the center point v(G) of the cluster G (see Figure 13). We
now describe our method for doing associative search:

 Query strand     Extend to Center Strand

         Prefix                           Suffix

Complement of               Complement  of
Possibility Strand            Center Strand
 Biased-Error          Error-Free Synthesis

Fig. 14. Extension of the Query Strand to
the Center Strand.

4r

2r

r

Fig. 15. Hierarchical Associative
Search.

[0] Initialization: For each cluster G of the database vectors, we synthesize a
DNA strand s(G), to be called the center stand of that cluster G whose words
encode the center point of the cluster, along with a unique identification tag.
Then, using a biased-error chemical synthesis similar to the procedure given
in Section 2.3 for synthesis of the EC strands, we construct from the center
stand s(G) of each of the cluster G, a multiset PS of single stranded DNA,
each consisting of a prefix portion that encodes the complement of a possibility



164 J.H. Reif and T.H. LaBean

vector in P2d(G), followed by a suffix portion consisting of the complement of
the center stand s(G). This step is done only once, for a static data base.
Associative Query Processing
Input: A query vector v.
[1] We synthesize a multiplicity of DNA strands, called query strands encoding
the query vector v.
[2] We then combine these query strands with the multiset PS. The hybridiza-
tion products include doubly stranded DNA complexes. Each of these consist of
a query strand hybridized with a corresponding prefix of a PS strand, with single
stranded overhang consisting of the suffix portion of the PS strand consisting
of the complement of the center strand (see Figure 14).
[3] Primer extension is applied to these hybridization products with overhangs,
so that each query strand is extended to include the center strand as its new
suffix, forming a result strand.
[4] Then we denature to single stranded DNA, and separate out the result
strands using affinity separation with strands complementary to the center
strands.
[5] Output: Finally, we output to conventional media (e.g., by the use of
DNA chips) the center vectors corresponding to the suffix portions of the re-
sult strands. We use a conventional computer to enumerate the vectors of the
clusters of each of these center vectors and to determine which of each cluster’s
vectors are of distance at most d from the query vector v. (Recall we have already
precomputed, using a conventional computer, the clustering and the center of
each cluster. Hence these result strands suffice for us to determine the cluster
index and list of vectors of the clusters.)
The main point is that this construction reduces the associative search problem
to that of finding just exact matches (via complementary hybridization), and
this can be done very effectively by known DNA annealing methods (e.g., PCR).
Note that the set of possibility vectors Pd(Gi) defines an n-dimensional ball, with
respect to the defined distance metric, with radius 2d and centered at the center
point of cluster Gi. Since elements of the vectors range over a set of size b = |B|,
the size of the set P2d(G) of possibility vectors of any cluster G is at most b2d−1.
For bounded, modest size b and d (where say b = 28 = 64 and d = 5), we are
able to do this construction in the DNA domain, since DNA is quite compact.
Proof of the Algorithm and Analysis. We now show:
Theorem 2. The final output determined in step [5] consists of all database
vectors that are at most distance d to the query vector. Furthermore, the number
of distinct database vectors that are enumerated by a conventional computer in
step [5] is at most b2d − 1.

Proof: Let G1, . . . , Gj be the selected clusters whose centers are of distance
at most d from the query vector v, and let v1, . . . , vj be the centers of these
clusters selected in step [4]. Note that the query vector, represented by a DNA



Computationally Inspired Biotechnologies 165

strand, will be included among the possibility vectors of each of those clusters.
We need to prove that these center vectors are of distance at most 2d from the
query vector, and their clusters include all database vectors that are at most
distance d to the query vector. The elements of each cluster Gi are of distance
at most d from their center vector vi, and each center vector vi is of distance at
most d from the query vector v. Hence, the vectors in these clusters are at most
twice this distance, that is of most distance 2d, to the query vector v. So the
number of distinct database vectors that are enumerated in step [5] is at most
b2d − 1. Furthermore, consider any database vector v′ that is at most distance
d to the query vector v. Then v′ will be in a cluster G whose center v(G) is at
most distance d from v′, and so the center v(G) will be of distance at most 2d

from the query vector v. Hence, v′ will be included as an element of one of these
selected clusters G1, . . . , Gj . QED

(B) Hierarchical Associative Search. Our next method, which we just
sketch, is a more complex procedure which makes only the assumption that
the match distance be upper bounded by d. For example, we will assume that
the match distance be at most the radius of the entire set of database vectors. We
apply known hierarchical VQ-Coding clustering techniques [G90, JD88]. These
make a series of distinct clusterings of the data at exponentially increasing clus-
ter radius. These hierarchical sequence of clusterings can be represented by a
tree, whose root is the original set of vectors, and where each level of the tree is
a clustering, refining the clustering at the previous level, and with cluster radius
half that of the previous level (see Figure 15). Given an associative match query,
let the near query vectors within radius r be the set Pr(G) of possibility vectors
of a hypothetical cluster of radius r with center vector being the input query
vector. For each level of the tree with a radius bound of say r, we synthesize a
multiset of DNA strands, which will be called near query strands which encode
the near query vectors within radius r. To execute an associative search, we do
not search just using the input query vector, and instead augment the query
vector with these near query vectors of increasing radius. The search proceeds
on decreasing levels = 0, 1, . . . starting at the lowest level of the tree. At each of
these levels, of radius bound of say r, we execute an affinity separation to de-
termine if there is any exact matches between the near query vector within that
radius r that exactly matches a vector of the database. We terminate where ei-
ther r exceeds d, or at the first level where at least one near query vector exactly
matches a vector of the database. Again, the main point of this construction is to
reduce the associative search problem to that of finding just exact matches (via
complementary hybridization), and again this can be done very effectively by
known DNA annealing methods such as PCR. Note that the number possibility
vectors of any cluster of radius r is at most br − 1, and this is upper bounded
by b2d − 1, as in the previous method. Hence for bounded, modest size b and d,
we are able to do this construction in the ultra-compact DNA domain.



166 J.H. Reif and T.H. LaBean

5 Extension of Associative Search to Include Boolean
Conditionals

Finally, we briefly describe how to extend associative search queries to sophis-
ticated hybrid queries that include also Boolean formula conditionals (with a
small bounded number n’ of Boolean variables), by combining our methods for
DNA associative search with known BMC methods for solving the SAT problem
(e.g., using surface chemistry techniques [CRFCC+96, LGCCL+96, BCGT96,
CCCFF+97, LTCSC97, LFW+98, WQF+98]). We assume that each of the vec-
tors of the database are augmented with “digital tag vectors” consisting of a list
of n’ Boolean values, encoding binary information about the vector. An extended
query consist of (i) a query vector to be matched with and (ii) a Boolean for-
mula to be satisfied. The extended query requires finding those database vectors
that closely match the query vector and also whose Boolean variables satisfy the
queries Boolean formula. The DNA strands encoding these database vectors also
are augmented with prefix digital tag strands consisting of a sequence of DNA
words encoding these Boolean values.

"Wet" Data Base Strand

         Prefix                           Suffix

"Digital Tag"                    Natural DNA
DNA words
Encoding
Boolean Variables

Fig. 16. A Natural DNA Strand with a Digital Tag Prefix.

For example, the extended database might consist of natural DNA strands
(e.g., from blood or other body tissues) onto which are appended at their 5’
ends prefix digital tag strands (see Figure 16) consisting of DNA words encoding
identifying information about each strand (such as social security number of the
person whose DNA was sampled, cell type, the date, further medical data, etc.).
The digital tag strands may have been constructed by previous BMC processing.
There is also proposed methods [LL97] for recoding natural DNA, by the use of
nonstandard DNA bases, into a form more amenable to computation.

Our technique is to execute the extended query in two stages:
(a) We first execute the Boolean formula portion of the query as a SAT prob-
lem, using biomolecular computing techniques previously developed (e.g., using
surface chemistry techniques referenced above). These method can be imple-
mented so thatthose strands not encoding SAT solutions are deleted, and all the
remaining DNA strands satisfy the Boolean formula.
(b) Then we execute the associative search, as previously described in Section
3, on the remaining strands, to find the closest match to the query vector that
satisfies the query’s Boolean formula.



Computationally Inspired Biotechnologies 167

6 Conclusion

We have provided some examples of how ideas from information processing dis-
ciplines can be applied to biotechnology. (As we have already pointed out, this
is not the first time this was done, if we consider PCR as essentially a recursive
algorithm for selective strand amplification.) We believe that this approach of
“Computationally Inspired Biotechnologies” will be a profitable approach for
overcoming key biotechnology challenges remaining, for example:

– increased affinity selectivity for a wider range of molecules, and
– decreased errors in chemical synthesis.

Moreover, in the immediate future, the separation between computational and
biological technologies should narrow. As the miniaturization of biotechnology
continues, we can expect DNA chip technology to have also MEMS microflow
devices and computational processing capability as well (see Gehani and Reif
[GR98] and Suyama [S98]).

References

[A94] Adleman, L.M., “Molecular Computation of Solution to Combinatorial
Problems”, Science, 266, 1021, (1994).

[ARRW96] Adleman, L.M., P.W.K. Rothemund, S. Roweis, E. Winfree, “On Applying
Molecular Computation To The Data Encryption Standard”, 2nd Annual
DIMACS Meeting on DNA Based Computers, Princeton, June, 1996

[BCGT96] Bach, E., A. Condon, E. Glaser, and C. Tanguay, “Improved Models and
Algorithms for DNA Computation”, Proc. 11th Annual IEEE Conference
on Computational Complexity, J. Computer and System Sciences, to ap-
pear.

[B94] Barnes, W.M., “PCR amplification of up to 35-kb DNA with high fidelity
and high yield from bacteriophage templates”, Proc. Natl. Acad. Sci., 91,
2216–2220, (1994).

[B95] Baum, E. B., “How to build an associative memory vastly larger than the
brain”, Science, pp 583-585, April 28, 1995.

[B96] Baum, E. B. “DNA Sequences Useful for Computation, 2nd Annual DI-
MACS Meeting on DNA Based Computers”, Princeton University, June
1996.

[BC81] Beaucage,S.L., and Caruthers,M.H. (1981). “Deoxynucleoside
phosphoramidites- A new class of key intermediates for deoxypolynucleotide
synthesis”, Tetrahedron Lett. 22,1859-1862.

[B68] E. R. Berlekamp, “Algebraic Coding theory”, McGraw-Hill Book Company,
NY (1968).

[BKH96] Blanchard, A. P., R. J. Kaiser and L. E. Hood, “High-density oligonucleotide
arrays”, Biosens. Bioelec., Vol. 11, 687-690, (1996).

[BDL95] Boneh, D., C. Dunworth, R. Lipton, “Breaking DES Using a Molecular
Computer”, Princeton CS Tech-Report number CS-TR-489-95, (1995).



168 J.H. Reif and T.H. LaBean

[BL95a] Boneh, D., and R. Lipton, “Making DNA Computers Error Resistant”,
Princeton CS Tech-Report CS-TR-491-95, Also in 2nd Annual DIMACS
Meeting on DNA Based Computers, Princeton University, June 1996.

[BL95b] Boneh, D., and R. Lipton, “A Divide and conquer approach to DNA se-
quencing”, Princeton University, 1996.

[BSS+94] N. E. Broude, T. Sano, C. L. Smith, and C. R. Cantor, “Enhanced DNA
Sequencing by hybridization”, Proc. Natl. Acad. Sci., Vol. 91, pp. 3071-
3076, (April, 1994).

[CCCFF+97] Cai, W., A. Condon, R.M. Corn, Z. Fei, T. Frutos, E. Glaser, Z. Guo,
M.G. Lagally, Q. Liu, L.M. Smith, and A. Thiel, “The Power of Surface-
Based Computation”, Proc. First International Conference on Computa-
tional Molecular Biology (RECOMB97), January, 1997.

[CRFCC+96] Cai, W., E. Rudkevich, Z. Fei, A. Condon, R. Corn, L.M. Smith, M.G.
Lagally, “Influence of Surface Morphology in Surface-Based DNA Com-
puting”, Submitted to the 43rd AVS National Symposium, Abstract No.
BI+MM-MoM10, (1996).

[CYH+96] Chee, M. ,R. Yang, E. Hubbell, A. Berno, X. C. Huang, D. Stern, J. Win-
kler, D. J. Lockhart, M. S. Morris and S. P. A. Fodor, “Accessing genetic
information with high-density DNA arrays”, Science, Vol. 274, 610-614,
(1996).

[CW97] Chen, J., and D. Wood, “A New DNA Separation Technique with Low
Error Rate”, Third Annual DIMACS Workshop on DNA Based Computers,
University of Pennsylvania, June 23-26, 1997. Published in DNA Based
Computers, III, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, Vol 48 (ed. H. Rubin), American Mathematical Society,
(1999).

[CRB99] Clelland, C.T., Risca, V., and C. Bancroft. “Genomic Steganography: Am-
plifiable Microdots”. To appear in Nature, 1999.

[CT 91] Cover, T. M. and J. A. Thomas, “Elements of Information Theory”, John
Wiley, New York, NY, (1991).

[DMGFS96] Deaton, R., R.C. Murphy, M. Garzon, D.R. Franceschetti, and S.E.
Stevens, Jr., “Good encodings for DNA-based solutions to combinatorial
problems”, Proceedings of the 2nd Annual DIMACS Meeting on DNA
Based Computers, June 1996.

[DMGFS98] Deaton, R., R.C. Murphy, M. Garzon, D.R. Franceschetti, and S.E.
Stevens, Jr., “Reliability and efficiency of a DNA-based computation”,
Phys. Rev. Lett. 80, 417-420 (1998).

[DMRGF+97] Deaton, R., R.C. Murphy, J.A. Rose, M. Garzon, D.R. Franceschetti,
and S.E. Stevens, Jr., “A DNA Based Implementation of an Evolution-
ary Search for Good Encodings for DNA Computation”, ICEC’97 Special
Session on DNA Based Computation, Indiana, April, 1997.

[DHS97] Deputat, M., G. Hajduczok, E. Schmitt, “On Error-Correcting Structures
Derived from DNA”, Third Annual DIMACS Workshop on DNA Based
Computers, University of Pennsylvania, June 23-26, 1997. Published in
DNA Based Computers, III, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, Vol 48 (ed. H. Rubin), American Mathe-
matical Society, (1999).

[DDSPL+ 93] Drmanac, R, S. Drmanac, Z. Strezoska, T. Paunesku, I. Labat, M.
Zeremski, J. Snoddy, W. K. Funkhouser, B. Koop, L. Hood, and R. Crken-



Computationally Inspired Biotechnologies 169

jakov “DNA Sequence Determination by Hybridize: A Strategy for Efficient
Large-Scale Sequencing”, Science, 260, 1649–1652, (1993).

[FRP+91] Fodor, S. P. A., J. L. Read, C. Pirrung, L. Stryer, A. T. Lu and D. Solas,
“Light-directed spatially addressable parallel chemical synthesis”, Science,
Vol. 251, 767-773, (1991).

[FTCSC97] Frutos, A.G., A.J. Thiel, A.E. Condon, L.M. Smith, R.M. Corn, “DNA
Computing at Surfaces: 4 Base Mismatch Word Design”, Third Annual
DIMACS Workshop on DNA Based Computers, University of Pennsylvania,
June 23-26, 1997. Published in DNA Based Computers, III, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, Vol 48 (ed. H.
Rubin), American Mathematical Society, (1999).

[GDNMF97] Garzon, M., R. Deaton, P. Neathery, R.C. Murphy, D.R. Franceschetti,
S.E. Stevens Jr., “On the Encoding Problem for DNA Computing”, Third
Annual DIMACS Workshop on DNA Based Computers, University of Penn-
sylvania, June 23-26, 1997. Published in DNA Based Computers, III, DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science,
Vol 48 (ed. H. Rubin), American Mathematical Society, (1999).

[GLR99] Gehani, A., T. H. LaBean, and J.H. Reif, “DNA-based Cryptography”, 5th
DIMACS Workshop on DNA Based Computers, MIT, June, 1999. DNA
Based Computers, V, DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, (ed. E. Winfree), American Mathematical Soci-
ety, 2000. http://www.cs.duke.edu/∼reif/paper/DNAcypt/crypt.ps

[GR98] Gehani, A. and J. Reif, “Micro flow bio-molecular computation”, 4th DI-
MACS Workshop on DNA Based Computers, University of Pennsylvania,
June, 1998. DNA Based Computers, IV, DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, (ed. H. Rubin), American Math-
ematical Society, (1999). Also, special issue of Biosystems, Vol. 52, Nos. 1-3,
(ed. By L. Kari, H. Rubin, and D. H. Wood), pp 197-216, (1999).
http://www.cs.duke.edu/∼reif/paper/geha/microflow.ps .

[GGG91] Gersho, A., R. Gallager, and R. M. Gray, “Vector Quantization and Signal
Compression”, Kluwer Academic Publishers, (1991).

[GFBCL+96] Gray, J. M. T. G. Frutos, A.M. Berman, A.E. Condon, M.G. Lagally,
L.M. Smith, R.M. Corn, “Reducing Errors in DNA Computing by Appro-
priate Word Design”, University of Wisconsin, Department of Chemistry,
October 9, 1996.

[G90] Gray, R. M., “Source Coding Theory”, Klewer Academic Publishers,
Boston, (1990).

[GT94] Grumbach, S., and F. Tahi, “Compression of DNA Sequences”, Proceedings
of the IEEE Data Compression Conference (DCC’94), Snowbird, UT, 72–
82, March 1994.

[H50] Hamming, R. W., “Error Detection and error correcting codes”, Bell System
Technical Journal, Vol. 29, 147-160, (1950).

[HGL98] Hartemink, A., David Gifford, J. Khodor, “Automated constraint-based nu-
cleotide sequence selection for DNA computation”, 4th DIMACS Workshop
on DNA Based Computers, University of Pennsylvania, June, 1998. DNA
Based Computers, IV, DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, (ed. H. Rubin), American Mathematical Society,
(1999).

[HG97] Hartemink, A.J., D.K. Gifford, “Thermodynamic Simulation of Deoxy-
oligonucleotide Hybridize for DNA Computation”, Third Annual DIMACS



170 J.H. Reif and T.H. LaBean

Workshop on DNA Based Computers, University of Pennsylvania, June
23-26, 1997. Published in DNA Based Computers, III, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, Vol 48 (ed. H.
Rubin), American Mathematical Society, (1999).

[JD88] Jain, A. K. and R. C. Dubes, “Algorithms for clustering data,” Prentice
Hall, Englewood Cliffs, N.J., (1988).

[KG97] Khodor, J., and David K. Gifford, “The Efficiency of Sequence-Specific
Separation of DNA Mixtures for Biological Computing”, Third Annual DI-
MACS Workshop on DNA Based Computers, University of Pennsylvania,
June 23-26, 1997. Published in DNA Based Computers, III, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, Vol 48 (ed. H.
Rubin), American Mathematical Society, (1999).

[KG98] Khodor, J., D. Gifford, “Design and implementation of computational sys-
tems based on programmed mutagenesis”, 4th DIMACS Workshop on DNA
Based Computers, University of Pennsylvania, June, 1998. DNA Based
Computers, IV, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, (ed. H. Rubin), American Mathematical Society, (1999).

[FLGL99] Lipschutz, R.J., Fodor, P.A., Gingeras, T.R., and Lockhart, D.J. Nature
Genetics Supplement, vol 21, pp 20-24 (1999).

[LYK+00] LaBean, T. H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H. and
Seeman, N.C., “The construction, analysis, ligation and self-assembly of
DNA triple crossover complexes”, J. Am. Chem. Soc. 122, 1848-1860 (2000).
www.cs.duke.edu/∼reif/paper/DNAtiling/tilings/JACS.pdf

[LWR99] LaBean, T. H., E. Winfree, J. H. Reif, “Experimental Progress in Com-
putation by Self-Assembly of DNA Tilings”, 5th International Meeting on
DNA Based Computers(DNA5), MIT, Cambridge, MA, (June, 1999). To
appear in DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, ed. E. Winfree, to appear American Mathematical Society,
2000. http://www.cs.duke.edu/∼thl/tilings/labean.ps

[LL97] Landweber, L.F. and R. Lipton, “DNA 2 DNA Computations: A Potential
‘Killer App’?”, 3nd Annual DIMACS Meeting on DNA Based Computers,
University of Pens., (June 1997).

[L71] van Lint,J. H., “Coding Theory”, Lecture Notes in Mathematics, Springer
Verlag, NY, (1971).

[L95] Lipton, R.J. “DNA Solution of Hard Computational Problems”, Science,
268, 542–845, (1995).

[LFW+98] Liu, Q., A. Frutos, L. Wang, A. Thiel, S. Gillmor, T. Strother, A. Con-
don, R. Corn, M. Lagally, L. Smith, “Progress towards demonstration of a
surface based DNA computation: A one word approach to solve a model
satisfiability problem”, 4th DIMACS Workshop on DNA Based Comput-
ers, University of Pennsylvania, June, 1998. DNA Based Computers, IV,
DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, (ed. H. Rubin), American Mathematical Society, (1999).

[LGCCL+96] Liu, Q., Z. Guo, A.E. Condon, R.M. Corn, M.G. Lagally, and L.M.
Smith, “A Surface-Based Approach to DNA Computation”, Proc. 2nd An-
nual Princeton Meeting on DNA-Based Computing, June 1996.

[LTCSC97] Liu, Q., A.J. Thiel, A.G. Frutos, R.M. Corn, L.M. Smith, “Surface-Based
DNA Computation: Hybridize and Destruction”,Third Annual DIMACS
Workshop on DNA Based Computers, University of Pennsylvania, June
23-26, 1997. Published in DNA Based Computers, III, DIMACS Series in



Computationally Inspired Biotechnologies 171

Discrete Mathematics and Theoretical Computer Science, Vol 48 (ed. H.
Rubin), American Mathematical Society, (1999).

[LY97] Loewenstern, D. and Yainilos, P., “Significantly lower entropy estimates
for natural DNA sequences”, J.A Storer and M Cohn (Eds.), IEEE Data
Compression Conference, Snowbird, UT, pp. 151-161, (March, 1997).

[MLR+00] Mao, C., T.H. LaBean, J. H. Reif, and N.C. Seeman, “An Algorithmic Self-
Assembly”, Nature, Sept 28, (2000). www.cs.duke.edu/∼reif/paper /SELF-
ASSEMBLE/AlgorithmicAssembly.pdf

[MH98] Marshall, A., Hodgson, J. 1998 Nature Biotechnology 16, pp 27-31.
[MBD+97] McGall, G.H., Barone, A.D., Diggelmann, M.,Ngo, N.,Gentalen, E., and

Fodor, S.P.A. “The Efficiency of Light-Directed Synthesis of DNA Arrays
on Glass Substrates”. J. Am. Chem. Soc., 119(22): 5081-5090, (1997).

[MYP98] Mills, A., B. Yurke, P. Platzman, “Error-tolerant massive DNA neural- net-
work computation”, 4th DIMACS Workshop on DNA Based Computers,
University of Pennsylvania, June, 1998. DNA Based Computers, IV, DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science,
(ed. H. Rubin), American Mathematical Society, (1999).

[M96] Mir, K.U., “A Restricted Genetic Alphabet for DNA Computing”, 2nd
Annual DIMACS Meeting on DNA Based Computers, Princeton University,
(June 1996).

[NW99] Nevill-Manning, C.G. and I.H. Witten, “Protein is Incompressible”, J.A
Storer and M Cohn (Eds.), IEEE Data Compression Conference, Snowbird,
UT, pp. 257-266, (March, 1999).

[PSS+94] Pease, A. C. , D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes and S.
P. Fodor, “Light-generated oligonucleotide arrays for rapid DNA sequence
analysis”, Proc. Natl Acad. Sci. USA, Vol. 91, 5022-5026, (1994).

[P82] V. Pless, “Introduction to the theory of error-correcting codes,” John Wiley
and Sons, , NY (1982).

[OGB97] Orlian, M., F. Guarnieri, C. Bancroft, “Parallel Primer Extension Horizon-
tal Chain Reactions as a Paradigm of Parallel DNA-Based Computation”,
Third Annual DIMACS Workshop on DNA Based Computers, University
of Pennsylvania, June 23-26, 1997. Published in DNA Based Computers,
III, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, Vol 48 (ed. H. Rubin), American Mathematical Society, (1999).

[R93] Reif, J. (ed.), Synthesis of Parallel Algorithms”, Morgan Kaufmann, (1993).
[R95] Reif, J.H., “Parallel Molecular Computation: Models and Simula-

tions”, Seventh Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA95), ACM, Santa Barbara, 213–223, June
1995. Algorithmica, special issue on Computational Biology, 1999.
(http://www.cs.duke.edu/∼reif/paper/ paper.html)

[R97] Reif, J.H., “Local Parallel Biomolecular Computation”, 3rd DIMACS Meet-
ing on DNA Based Computers, Univ. of Penns., (June, 1997). DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, ed. H.
Rubin, (1999).
(http://www.cs.duke.edu/∼reif/paper/Assembly.ps and /Assembly.fig.ps)

[R98] Reif, J.H., “Paradigms for Biomolecular Computation”, First International
Conference on Unconventional Models of Computation, Auckland, New
Zealand, January 1998. Unconventional Models of Computation, edited by
C.S. Calude, J. Casti, and M.J. Dinneen, Springer Pub., Jan. 1998, pp
72-93. (http://www.cs.duke.edu/∼reif/paper/paradigm.ps)



172 J.H. Reif and T.H. LaBean

[RLS00] J.H. Reif, T. H. LaBean, and Seeman, N.C.,Challenges and Applica-
tions for Self-Assembled DNA Nanostructures, Invited paper, Sixth In-
ternational Meeting on DNA Based Computers (DNA6), DIMACS Se-
ries in Discrete Mathematics and Theoretical Computer Science, Lei-
den, The Netherlands, (June, 2000) ed. A. Condon. To be published by
Springer-Verlag as a volume in Lecture Notes in Computer Science, (2000).
http://www.cs.duke.edu/∼reif/paper/SELFASSEMBLE/selfassemble.ps

[R94] Roberts, S.S., “Turbocharged PCR”, Jour. of N.I. H. Research, 6, 46–82,
(1994).

[RDGS97] Rose, J.A., R. Deaton, M. Garzon, and S.E. Stevens Jr., “The Effect of Uni-
form Melting Temperatures on the Efficiency of DNA Computing”, Third
Annual DIMACS Workshop on DNA Based Computers, University of Penn-
sylvania, June 23-26, 1997. Published in DNA Based Computers, III, DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science,
Vol 48 (ed. H. Rubin), American Mathematical Society, (1999).

[RWBCG+96] Roweis, S., E. Winfree, R. Burgoyne, N.V. Chelyapov, M.F. Goodman,
P.W.K. Rothemund, L. M. Adleman, “A Sticker Based Architecture for
DNA Computation”, 2nd Annual DIMACS Meeting on DNA Based Com-
puters, Princeton University, June1996, Also as Laboratory for Molecular
Science, USC technical report A Sticker Based Model for DNA Computa-
tion, May 1996.

[R96] R96 Rubin, H. “Looking for the DNA killer app.”, Nature, 3, 656–658,
(1996).

[S48] Shannon, C. E., “A mathematical theory of communication”, Bell System
Technical Journal, Vol. 27, 379-423 and p 623-656, (1948).

[S49] Shannon, C. E., “Communication in the presence of noise”, Proceedings of
the I. R. E., Vol. 37, 10-21, (1949).

[S98] Suyama, A., “DNA chips - Integrated Chemical Circuits for DNA Diagnosis
and DNA computers”, To appear,(1998).

[WQF+98] Wang, L., Q. Liu, A. Frutos, S. Gillmor, A. Thiel, T. Strother, A. Con-
don, R. Corn, M. Lagally, L. Smith, “Surface-based DNA computing op-
erations: DESTROY and READOUT”, 4th DIMACS Workshop on DNA
Based Computers, University of Pennsylvania, June, 1998. DNA Based
Computers, IV, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, (ed. H. Rubin), American Mathematical Society, (1999).

[WLW+98] Winfree, E., F. Liu, Lisa A. Wenzler, N. C. Seeman, “Design and Self-
Assembly of Two Dimensional DNA Crystals”, Nature 394: 539–544, 1998.
(1998).

[WYS96] Winfree, E., X. Yang, N.C. Seeman, “Universal Computation via Self- as-
sembly of DNA: Some Theory and Experiments”, 2nd Annual DIMACS
Meeting on DNA Based Computers, Princeton, June, 1996.

[W98] Wood, D. H., “Applying error correcting codes to DNA computing”, 4th
DIMACS Workshop on DNA Based Computers, University of Pennsylva-
nia, June, 1998. DNA Based Computers, IV, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, (ed. H. Rubin), American
Mathematical Society, (1999).



Challenges and Applications for Self-Assembled
DNA Nanostructures?

John H. Reif??, Thomas H. LaBean, and Nadrian C. Seeman

Duke University, New York University

Abstract. DNA self-assembly is a methodology for the construction of
molecular scale structures. In this method, artificially synthesized single
stranded DNA self-assemble into DNA crossover molecules (tiles). These
DNA tiles have sticky ends that preferentially match the sticky ends
of certain other DNA tiles, facilitating the further assembly into tiling
lattices. We discuss key theoretical and practical challenges of DNA self-
assembly, as well as numerous potential applications.
The self-assembly of large 2D lattices consisting of up to thousands of
tiles have been recently demonstrated, and 3D DNA lattices may soon be
feasible to construct. We describe various novel DNA tiles with properties
that facilitate self-assembly and their visualization by imaging devices
such as atomic force microscope. We discuss bounds on the speed and
error rates of the various types of self-assembly reactions, as well as
methods that may minimize errors in self-assembly. We briefly discuss
the ongoing development of attachment chemistry from DNA lattices
to various types of molecules, and consider application of DNA lattices
(assuming the development of such appropriate attachment chemistry
from DNA lattices to these objects) as a substrate for:
(a) layout of molecular electronic circuit components,
(b) surface chemistry, for example ultra compact annealing arrays,
(c) molecular robotics; for manipulation of molecules using molecular
motor devices.
DNA self-assembly can, using only a small number of component tiles,
provide arbitrarily complex assemblies. It can be used to execute com-
putation, using tiles that specify individual steps of the computation. In
this emerging new methodology for computation:

-input is provided by sets of single stranded DNA that serve as nucle-
ation sites for assemblies, and

? A postscript version of this paper is at URL
http://www.cs.duke.edu/∼reif/paper/SELFASSEMBLE/selfassemble.ps.

?? Contact address: Department of Computer Science, Duke University, Box 90129,
Durham, NC 27708-0129. E-mail: reif@cs.duke.edu. John Reif is supported by Grants
NSF/DARPA CCR-9725021, CCR-96-33567, NSF IRI- 9619647 and EIA-0086015,
ARO contract DAAH-04-96-1-0448, and ONR contract N00014-99-1-0406. Nadrian
C. Seeman is supported by Grants GM-29554 from the National Insititute of General
Medical Sciences, ONR contract N00014-98-1-0093, DARPA/NSF grant NSF-CCR-
97-2502, AFSOR contract F30602-98-C-0148 NSF grants CTS-9986512 and EIA-
0086015.

A. Condon (Ed.): DNA 2000, LNCS 2054, pp. 173–198, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



174 J.H. Reif, T.H. LaBean, and N.C. Seeman

-output can be made by the ligation of reporter strands of DNA that
run though the resulting assembly, and then released by denaturing.
DNA self-assembly can be used to execute massively parallel computa-
tions at the molecular scale, with concurrent assemblies that may ex-
ecute computations independently. Due to the very compact form of
DNA molecules, the degree of parallelism (due to distinct tiling assem-
blies) may be up to 1015 to possibly 1018. We describe various DNA
tiling assemblies that execute various basic computational tasks, such
as sequences of arithmetic and logical computations executed in mas-
sively parallel fashion. We also consider extensions of these computa-
tional methods to 3D DNA tiling lattices and to assemblies that hold
state.

1 Introduction to Tiling Self-Assemblies

1.1 Self-Assembly

This is a process involving the spontaneous self-ordering of substructures into
superstructures.
Biological Self-Assembly. We take inspiration from the cell, which performs
a multiplicity of self-assembly tasks, including the self-assembly of cell walls (via
lipids), of microtubules, etc. Many of these biological self-assembly processes
utilize the specificity of ligand affinities to direct the self-assembly. We will focus
instead on self-assemblies whose components are artificially constructed tiles.

1.2 Domino Tiling Problems

These were defined by Wang [Wang61] (Also see the text [Grunbaum, et al,
87]). The input is a finite set of unit size square tiles, each of whose sides are
labeled with symbols over a finite alphabet (the pads). Additional restrictions
may include the initial placement of a subset of these tiles, and the dimensions of
the region where tiles must be placed. Assuming arbitrarily large supply of each
tile, the problem is to place the tiles, without rotation (a criterion that cannot
apply to physical tiles), to completely fill the given region so that each pair of
abutting tiles have identical symbols on their contacting sides. (See Figure 1.)

Domino tiling problems over an infinite domain with only a constant num-
ber of tiles was first proved by [Berger66] to be undecidable; proofs rely on
constructions wherein tiling patterns simulate single-tape Turing Machines (see
also [Berger66, Robinson71, Wang75]). Other results include reductions of NP-
complete problems to finite-size tiling problems [LewisPapa81, Moore00]

1.3 Self-Assembly of Tiling Lattices

Domino tiling problems do not presume or require a specific process for tiling.
However, we will presume the use of the self-assembly processes for construction
of tiling lattices. In this self-assembly process, the preferential matching of tile



Challenges and Applications 175

Fig. 1. A tiling assembly using ‘Smart Bricks’ with affinity between colored pads.

sides facilitates the further assembly into tiling lattices. The sides of the tiles
are assumed to have some methodology for selective affinity, which we call pads.
Pads function as programmable binding domains, which hold together the tiles.

Since domino tiling problems are undecidable (see Section 3), tiling self-
assemblies can theoretically provide arbitrarily complex assemblies even with a
constant number of distinct tile types. As a very simple example, it possible
to construct tiling assemblies with self-delimiting boundaries (e.g., rectangular
boundaries of a give width w and length h), by use of a set of wh distinct tiles,
with w distinct pads types on the bottom and top of a set of square tiles and
a set of h pad types on the other sides of these tiles, and this can also be done
with a constant number of distinct tiles. (See [Rothemund and Winfree, 2000b]
for improved program-size complexity of self-assembled squares.)

Pad binding mechanisms for the preferential matching of tile sides can be
provided by various methods:
(i) molecular affinity, using for example hydrogen bonding of complementary
DNA or RNA bases,
(ii) magnetic attraction, e.g., pads with magnetic orientations constructed by
curing the polymer/ferrite composites in the presence of strong magnet fields,
and also pads with patterned strips of magnetic orientations,
(iii) capillary force, using hydrophobic/hydrophilic (capillary) effects at surface
boundaries that generate lateral forces,
(iv) shape complementarity (or conformational affinity), using the shape of the
tile sides to hold them together.

There are a variety of distinct materials for tiles, at a variety of scales:
(a) Meso-Scale Tiling Assemblies have tiles of size a few millimeters
up to a few centimeters. Whitesides at Harvard University has developed
and tested multiple technologies [Zhao, et al, 98] [Xia et al, 98a,98b], [Bow-
den,et al 98], [Harder,et al 00] for meso-scale self-assembly, using capil-
lary forces, shape complementarity, and magnetic forces (see http://www-
chem.harvard.edu/GeorgeWhitesides.html). [Rothemund, 2000] also gave some
meso-scale tiling assemblies using polymer tiles on fluid boundaries with pads
that use hydrophobic/hydrophilic forces. A materials science group at the



176 J.H. Reif, T.H. LaBean, and N.C. Seeman

U. of Wisconsin also tested meso-scale self-assembly using magnetic tiles
(http://mrsec.wisc.edu/edetc/selfassembly). These meso-scale tiling assemblies
were demonstrated by a number of methods, including placement of tiles on
a liquid surface interface (e.g., at the interface between two liquids of distinct
density or on the surface of an air/liquid interface).
(b) Molecular-Scale Tiling Assemblies have tiles of size up to a few hundred
Angstroms. Specifically, DNA tiles will be the focus of our discussions in the
following sections.

1.4 Goals and Organization of This Paper

The goal of this paper is describe techniques for self-assembly of DNA tiling
arrays and applications of this technology, including DNA computation. We give
in Section 2 a description of self-assembly techniques for DNA tilings and discuss
applications in Section 3. Section 4 describes DNA tiling computations and their
applications. Section 5 discusses the kinetics of self-assemblies and error control
and Section 6 concludes the paper.

2 DNA Self-Assembly of DNA Tilings

2.1 DNA as a Construction Material

Nano-fabrication of structures in DNA was pioneered by the Seeman laboratory
([Seeman82, 94b, 96a]), who built a multitude of DNA nano-structures using
DNA branched junctions [Seeman89, Wang91a, Du92]. These previous systems
were flexible, so control over synthesis and proof of synthesis were both limited
to the topological level, rather than the geometrical level (in contrast to the
tiles described below). These DNA nano-structures included: DNA knots [See-
man93], Borromean rings [Mao97], a cube [Chen91], and a truncated octahedron
[Zhang94] (reviewed in e.g. [Seeman98] [Seeman94b] and [Seeman96a]).

2.2 DNA Tiles Constructed from DX and TX Complexes

The building blocks in the tiling constructions to be discussed are branched
DNA complexes, which we call DNA tiles, consisting of several individual DNA
oligonucleotides that associate with well-defined secondary and tertiary struc-
ture (see [Winfree, et al 98] and below description of DX and TX tiles). These
associate with well-defined secondary and tertiary geometric structure (which is
much more predictable and less flexible than DNA nano-structures using DNA
branched junctions). These complexes come in a number of varieties that differ
from one another in the geometry of strand exchange and the topology of the
strand paths through the tile. The branched DNA complexes used for tiling as-
semblies include the double-crossover (DX) and triple-crossover (TX) complexes,
The DX and TX complexes consists of two (three, respectively) double-helices
fused by exchange (crossover) of oligonucleotide strands at a number of separate



Challenges and Applications 177

crossover points. Anti-parallel crossovers cause a reversal in direction of strand
propagation through the tile following exchange of strand to a new helix. For
example, DAO and DAE are double-crossover DX tiles with two anti-parallel
crossovers1. (See Figure 2.) .

Fig. 2. Double crossover isomers.

DX complexes have been used successfully as substrates for enzymatic re-
actions including cleavage and ligation [Liu, Sha and Seeman,99]. The TX
(see [LaBean,99]) TAO and TAE tiles, are similar except that they have three
double-helices interlocked by exchange of oligonucleotide strands at four sep-
arate crossover points, two between the first pair of helices, two between the
second (See the TAO in Figure 3 and the TAE in Figure 4. Both DX and TX
motifs are useful for tiling assemblies; the DX (TX) complexes provide up to
four (six, respectively) ssDNA pads [Liu, et al 99a] for encoding associations
with neighboring tiles.

                     

GTTCAGCCTTAGT   CCACAGTCACGGATGG    ACTCGATAGCCAA

CAAGTCGGAATCA   GGTGTCAGTGCCTACC    TGAGCTATCGGTT

T
T
T

T

T
T
T

T

TCTGG    ACTCC    TGGCATCTCATTCGCA    GGACA    GGTAG

AGACC    TGAGG    ACCGTAGAGTAAGCGT    CCTGT    CCATC

CATCTCGT        CCTTGCGTTTCGCCAATCCAGAAGCC       TGCGAGCA

GTAGAGCA        GGAACGCAAAGCGGTTAGGTCTTCGG        ACGCTCGT

2

2

1

3

4 1

4

3

Fig. 3. The TAO tile and a Strand and Sequence Trace through the TAO Tile.
DNA tiles are designed to contain several short sections of unpaired, single-strand DNA
(ssDNA) extending from the ends of selected helices (often called ’sticky ends’) that
function as programmable binding domains, which are the tile pads.

1 The structure of the TAE resembles the TAO in that it is constructed of three
double-helices linked by strand exchange, however, it contains an Even (rather
than Odd) number of helical half-turns between crossover points. Even spac-
ing of crossovers allows reporter strands (shown in black) to stretch straight
through each helix from one side of the tile to the other. These three horizon-
tal reporter segments are used for building up a long strand which records in-
puts and outputs for the entire assembly computations. A 3D confirmation of
the TAE tile has been rendered by Brendon Murphy at Duke University; see
http://www.duke.edu/∼bkm2/taehtml/present.html.



178 J.H. Reif, T.H. LaBean, and N.C. Seeman

Fig. 4. The TAE Tile.

2.3 DNA Tiling Lattices

Tile assemblies, or simply tilings, can be defined as superstructures or lattices
built up from smaller, possibly repetitive, component structures. Individual tiles
interact by annealing with other specific tiles via their ssDNA pads to self-
assemble into desired superstructures. These lattices can be either:
(a) non-computational, containing a fairly small number of distinct tile types in
a repetitive, periodic pattern; or
(b) computational, containing a larger number of tile types with more compli-
cated association rules which perform a computation during lattice assembly.

These DNA self-assembly procedures generally will be described as occurring
in two distinct stages:
(i) annealing of ssDNA into tiles; and
(ii) assembly of tiles into superstructures.

However, direct assembly of DNA lattices from component ssDNA is also
possible, and has in fact already been demonstrated for non-computational DNA
lattices described below.

2.4 Two Dimensional DNA Tiling Assemblies

Recently Winfree and Seeman have demonstrated the use DX tiles to construct
2D periodic lattices consisting of upto a hundred thousand DX units [Winfree, et
al 98] as observed by atomic force microscopy2 The surface features are readily
programmed [Winfree et al., 98; Liu et al., 99; Mao, et al 99]. (See Figure 5.)
In addition, [LaBean et al, 99] constructed produced tiling arrays (see Figure
6) composed of DNA triple crossover molecules (TX); these appear to assem-
ble at least as readily as DX tiles. These tiling assemblies had no fixed limit
on their size. [Reif97] introduced the concept of a nano-frame, which is a self-
assembled nanostructure that constrains the subsequent timing assembly (e.g.,
to a fixed size rectangle). Alternatively, a tiling assembly might be designed
to be self-delimitating (growing to only a fixed size) by the choice of tile pads
that essentially ’count‘ to their intended boundaries in the dimensions to be
delimitated.

2 An atomic force microscope [AFM] is a mechanical scanning device that provides
images of molecular structures laying on a flat 2D plate.



Challenges and Applications 179

Fig. 5. AB* Array. Lattice formed from two varieties of DX, one containing an ex-
tra loop of DNA projecting out of the lattice plane, faciliting atomic force microscope
imaging of the lattice.

Fig. 6. A non-computational DNA tiling formed by sets of two types of TAO tiles.

2.5 Three Dimensional DNA Tiling Assemblies

There are a number of possible methods for constructing 3D periodic (non-
computational) tilings. For example, stable tiling arrays with well-defined helices
that come out of the plane (e.g., the TX tiling array constructed in [LaBean et
al, 99]) may lead to ways to provide 3D tiling assemblies.

3 Applications of Non-computational DNA Tiling Arrays

We now identify some further technological impacts of non-computational DNA
assemblies; particularly their use as substrates for surface chemistry and molec-
ular electronics, robotics. Many of these applications are dependant on the
development of the appropriate attachment chemistry between DNA and the
molecules attached to the arrays.

3.1 Application to Layout of Molecular-Scale Circuit Components

Molecular-scale circuits have the potential of replacing the traditional micro-
electronics with densities up to millions of times current circuit densities. There
have been a number of recent efforts to design molecular circuit components
([Petty et al 95] [Aviram,Ratner98] ). Tour at Rice Univ. in collaboration with
Reed at Yale have designed and demonstrated [Chen et al 99] organic molecules



180 J.H. Reif, T.H. LaBean, and N.C. Seeman

(see Figure 7) that act as conducting wires [Reed et al.97],[Zhou99] and also
rectifying diodes (showing negative differential resistance (NDR), and as well
as [CRR+,99], [RCR+,00], and have the potential to provide dynamic random
access memory (DRAM) cells. These generally use ∼ 1, 000 molecules per de-
vice, but they have also addressed single molecules and recorded current through
single molecules [BAC+96], [RZM+97]. These molecular electronic components
make conformational changes when they do do electrical switching. One key
open problem in molecular electronics is to develop molecular electronic compo-
nents that exhibit restoration of a signal to binary values; one possible approach
may be to make use of multi-component assemblies that exhibit cooperative
thresholding.

Fig. 7. The Tour-Reed molecular electronic diode.

The Molecular Circuit Assembly Problem: This key problem is to develop meth-
ods for assembling these molecular electronic components into a molecular scale
circuit. Progress in the molecular circuit assembly problem could have revolu-
tionary impact on the electronic industry, since it is one of the key problems
delaying the development of molecular-scale circuits.
Top-down techniques versus bottom-up approaches. The usual approach of laying
out circuits by top-down techniques (e.g., lithography) may not be practical
at the molecular scale; instead bottom-up approaches (e.g., self-assembly) may
need to be used. Hence this may be a key area of application of DNA tiling
assemblies. There are a number of possible methods for the selective attachment
of the molecular electronic components to particular tiles of the DNA tiling
array, using annealing.
(i) linking chemistry between DNA and molecular electronics. Tour and Bunz
recently prepared DNA-linked systems where the DNA could serve as a selective
assembly glue for device configurations [WST+00].
(ii) The use of gold beads. In this approach, DNA strands attached to the
gold beads can hybridize at selected locations of the arrays, and the molecular
electronics components may self-assemble between the gold breads.

Also, DNA lattices may be useful as a foundation upon which to grow nano-
scale gold wires. This might be done by depositions of gold from colloid onto
nano-spheres immobilized on DNA tiling lattices. (See Figures 8 and 9.)

Molecular probe devices may be used to test the electrical properties of the
resulting molecular circuit attached to the DNA tiling array. Computational lat-
tices (as opposed to regular, non-computational lattices), may also be employed



Challenges and Applications 181

Hybridization of oligonucleotides
bound to gold nanospheres.

Deposition of gold from colloid in hydroxylamine.

DNA Templated Gold Grids and Wires.

Self-assembled DNA lattice with
protruding single-strand segments.

Solid gold wires form by fusion
of spheres along desired paths.

Fig. 8. Diffusion of gold on beads to form molecular-scale gold wires.

Fig. 9. A scheme for molecular-scale gold wires.

to provide for the layout of highly complex circuits, e.g., the layout of the elec-
tronic components of an arithmetic unit.

(Other related approaches for positioning of molecular electronic molecules
without lithography include that of [Bumm, et al., 1999, 2000], which describes
the use of directed self-assembly of molecular terrace structures in organic mono-
layers.)

3.2 Application to Surface Chemistry and Impact on Biotechnology

One intriguing application for DNA lattices is their use as an attachment sub-
strate for an array of DNA strands, using hybridization with single stranded
DNA on individual tiles. This has a number of applications that impact DNA
computations (e.g., see Brockman, et al 98][Smith,98]), as well as more general
biotechnology:
(a) It may provide a dramatic miniaturization of the DNA chip technology (a
technology that we have noted above might be used for I/O in DNA computa-
tions, among other applications), to molecular scale aspect widths.
(b) It may provide a dramatic miniaturization of DNA computation methods
using surface chemistry [Corn, et al 99], again to molecular scale aspect widths.



182 J.H. Reif, T.H. LaBean, and N.C. Seeman

Two dimensional DNA tiling lattices may in the future be self-assembled
with each of the tiles modified to have dangling hybridizationstrands, which will
be single stranded, as used by [Liu et al., 1999]. These hybridization strands
will be thus assembled in a very regular, dense fashion, and may have sequences
determined by the computational tiling. The differential hybridization of these
hybridization strands may be demonstrated with fluorescence tagged comple-
mentary DNA.

3.3 Tiling Assemblies with Molecular Motors

Several types of molecules are known to couple chemical energy to the generation
mechanical force, thereby functioning as molecular motors. Possible schemes for
molecular motors include:
(a) Re-Engineering Biological Molecular Motors. Cells make use of a vari-
ety of such motor-like devices in processes such as mitosis. The best characterized
of these fall into three categories.
(i) ATP synthase and ADP acts as a rotary motor, coupling proton flux through a
membrane with the phosphorylation of ADP to ATP. The F1 component of ATP
synthase can also be run in reverse, coupling hydrolysis of one ATP molecule to
120 B0 of rotation about the motor axis.
(ii) Myosin acts as a molecular running machine, skipping many steps along an
actin filament with each molecule of ATP consumed. All of these motors are
modular and can be re-engineered to accomplish linear or rotational motion of
essentially any type of molecular component.
(iii) Kinesin acts as a molecular walking machine, translocating itself (and any
attached components) in step-wise fashion along a microtubule. Each step along
the microtubule consumes one ATP molecule.
Construction of these biological molecular motors and their linking chemistry
to DNA arrays. These motors are composed of proteins with well known tran-
scription sequences. There are also well known proteins (binding proteins) that
provide linking chemistry to DNA. Hence it seems feasible that these molecular
motors and attached linking elements may be synthesized from sequences ob-
tained by concatenation of these transcription sequences. [Bachand, et al., 1999
and 2000], describes a biomolecular motor constructed of expressed ADP protein
[Montemagno,et al, 1998 and 1999] with an attached [Soong, et al, 1999] silicon
arm.
(b) DNA Motors. The Seeman laboratory made a DNA construction of a
mechanical device capable of controlled movement [Mao, et al 99a, Seeman, et
al 99]. This device consists of two DX molecules connected by a DNA double
helix that contains a segment of DNA that can be converted to the left-handed
Z-DNA structure. In B-promoting conditions, the two unconnected helices of the
device are on the same side of the connecting helix, but they are on opposite
sides in Z-promoting conditions. This results in an apparent rotary motion of
about a half-revolution, leading to atomic displacements ranging from 2 to 6 nm,
depending on the location of the atom relative to the axis of the stationary helix.
This motion has been demonstrated by fluorescent resonance energy transfer



Challenges and Applications 183

Fig. 10. A prototype DNA nanomechanical device.

(FRET). It is important to point out that the device based on the B-Z transition
is only a prototype that was used to learn how to characterize motion in DNA
systems. It lacks programmability, except to the limited extent that one can
orient the two DX molecules at a variety of relative torsion angles in the B-
state. Thus, all of the molecules must be in either the B-state or in the Z-state,
assuming one has robust chemical control.

These molecular motors might be combined with the 2-D arrays, to achieve
an array of devices (This has not been possible to do with the DX system, since
it is most convenient there for the pivoting part of the system to point normal to
the array. However, the TX system does not have this difficulty.). As an example,
an array with attached kinesin may provide for the movement of objects across
the surface of a two dimensional tiling array, similar to a conveyer belt, and this
may be the basis of a transport system (a molecular conveyer belt) for molecular
objects.

Programmable Sequence-Specific Control of DNA Mechanical Motion. How-
ever, such an array of molecular motors would be more useful if they can be
selectively controled. Such a system would lead to the ability to manipulate spe-
cific molecules and more generally, to do chemistry at chemically identical but
spatially distinct sites. Because it couples a series of distinct structural states
with programmability, such a system offers the potential of direct route to molec-
ular robotics. The Seeman laboratory is developing a related system based on the
paranemic crossover (PX) system, which leads to sequence-specific nanomechan-
ical motion. It may be switched readily between two discrete states, PX or JX,
in which the helices at one end of the molecule reverse positions in the transition
between states. An array of these molecular devices would contain individually
programmed PX/JX molecules, whose conformational state would be amenable
to specific reversal (or not, depending on the program) from cycle to cycle. A
DNA array with programmability of this sort may offer a mechanism to do DNA
computation of arrays whose elements (the tiles) hold state, as discussed in the
next section.



184 J.H. Reif, T.H. LaBean, and N.C. Seeman

4 Computation by Self-Assembled Tilings

4.1 DNA Computation

In his seminal paper on molecular computation [Adleman94], Adleman demon-
strated the use of recombinant DNA techniques for solving a small combinatorial
search problem. This work spawned considerable further work in DNA compu-
tation (See survey of [Reif, 1998]). However, one difficulty with such methods for
DNA computation is the number of laboratory procedures, each time consuming
and error-prone, grows with the size of the problem.

4.2 Computation by DNA Self-Assembly

We now focus on another approach: computation by self-assembly. In this case
Self-assembly is the spontaneous self-ordering of substructures into superstruc-
tures driven by annealing of Watson-Crick base-pairing DNA sequences. Compu-
tation by self-assembly entails the building up of superstructures from starting
units such that the assembly process itself performs the actual computation.
Adleman made use of a simple form of computation by self-assembly in his orig-
inal experiment [Adleman94]: instead of blindly generating all possible sequences
of vertices; instead, the oligonucleotide sequences and the logic of Watson-Crick
complementarity guide the self-assembly processes so that only valid paths are
generated. [Winfree95] generalized this approach to two-dimensional (2D) self-
assembly processes and showed that computation by self-assembly is Turing-
universal (also see prior Turing-universal results for tiling [Buchi62, Wang63,
75, Berger66, Robinson71] discussed below).

[Winfree96,Eng97] proposed self-assembly of linear, hairpin, and branched
DNA molecules to generate regular, bilinear, and context-free languages, respec-
tively. [Winfree96], Jonoska et al [Jonoska97, Jonoska98], and [Lagoudakis and
LaBean,99] all proposed the use of self-assembled DNA nanostructures to solve
NP complete combinatorial search problems (but the scale is limited to only
moderate size problems at best).
Programming Self-Assembly of DNA Tilings. Programming DNA self-
assembly of tilings amounts to the design of the pads of the DNA tiles (recall
these are sticky ends of ssDNA that function as programmable binding domains,
and that individual tiles interact by annealing with other specific tiles via their
ssDNA pads to self-assemble into desired superstructures). The use of pads with
complementary base sequences allows the neighbor relations of tiles in the final
assembly to be intimately controlled; thus the only large-scale superstructures
formed during assembly are those that encode valid mappings of input to out-
put. Consequently, the difficulty mentioned previously (with respect to DNA
computation) has been addressed: rather than implementing a DNA comput-
ing algorithm using a sequence of multiple laboratory procedures, our approach
essentially uses only four:
(i) mixing the input oligonucleotides to form the DNA tiles,
(ii) allowing the tiles to self-assemble into superstructures,



Challenges and Applications 185

(iii) ligating strands that have been co-localized, and
(iv) then performing a single separation to identify the correct output.

Fig. 11. Global and Local Assembly Parallelism. Local tile association rules dictate
that only valid computational lattices are able to form regardless of temporal ordering
of binding events.

4.3 Massively Parallel Computation by Tiling

The massive parallelism inherent in DNA-based computers has, since its incep-
tion, driven thinking in the field. In computation by self-assembly, parallelism
reveals itself in many ways. Each superstructure may contain information rep-
resenting a different calculation (global parallelism). Growth on each individual
superstructure may occur at many locations simultaneously local parallelism.
(See Figure 4.2.)

The depth of a tiling superstructure is the maximum number of self-assembly
reactions experienced by any substructure (the depth of the graph of reaction
events), and the size of a superstructure is the number of tiles it contains. Like-
wise for the number of layers. A superstructure consisting of an array of n×m
tiles, where n > m, is said to have m layers. Again, although it needs further
study, tiling systems with low depth, small size, and few layers are considered
desirable, motivating the search for efficient computations performed by such
systems. Tiling systems that produce only superstructures with k layers, for
some constant k, are said to use linear self-assembly. As an example, the two
tiling systems for addition discussed in [LaBean, et al 99] for n−bit sums pro-
duce linear superstructures that are arrays of size 3 × n and 1 × n, but known
tiling systems for multiplication produce n× n for n-bit products [Winfree99a],
and hence are not linear.

[Reif97] described DNA self-assembly methods of linear size and small depth
to solve a number of fundamental problems (e.g., prefix computation, permu-
tation, certain integer arithmetic operations, finite state automata simulation,
and string fingerprinting) that form the basis for the design of many parallel
algorithms. Furthermore, these elementary operations can be combined to per-
form more complex computations, such as bitonic sorting and general circuit
evaluation in O(log n) experimental steps.



186 J.H. Reif, T.H. LaBean, and N.C. Seeman

4.4 The Speed of Computing via DNA Tiling Assemblies
(Compared with Silicon-Based Computing

The speed of DNA tiling assemblies is limited by the annealing time, which can
be many minutes, and can be 1011 slower than a conventional computer. A DNA
computation via self-assembly must take into account the fact that the time to
execute an assembly can range from a few minutes up to hours. Therefore, a rea-
sonable assessment of the power of DNA computation must take into account
both the speed of operation as well as the degree of massive parallelism. Never-
theless, the massive parallelism (both within assemblies and also via the parallel
construction of distinct assemblies) possibly ranging from 1015 to 1018 provides
a potential that may be advantageous for classes of computational problems that
can be parallelized.

4.5 String-Tiles: A Mechanism for Small-Depth Tiling

An approach for small-depth computations is to compress several tile layers into
single tiles, so that the simplest form of linear self-assembly suffices. Linear self-
assembly schemes for integer addition were first described by [Reif97]; in this
scheme each tile performed essentially the operation of a single carry-bit logic
step. This linear self-assembly approach works particularly well when the topol-
ogy and routing of the strands in the DNA tiles is carefully considered, leading to
the notion of string tiles. The concept of string tile assemblies derives from Eng’s
observation that allowing neighboring tiles in an assembly to associate by two
sticky ends on each side, he could increase the computational complexity of lan-
guages generated by linear self-assembly. [Winfree99a] showed that by allowing
contiguous strings of DNA to trace through individual tiles and the entire as-
sembly multiple times, surprisingly sophisticated calculations can be performed
with 1-layer linear assemblies of string tiles. The TAE tiles recently developed
by [LaBean, et al 99] are particularly useful as string tiles.

4.6 Input/Output to Tiling Assemblies Using Scaffold and Reporter
Strands

Input and output are critical to the practical use of DNA-based comput-
ing3Winfree [Winfree95] used the first and last layers of the assembly for input
3 There are a number of known methods for synthesis of DNA from sequence in-

formation provided by conventional media, (e.g., by PCR, restriction cutting, or
sequencing).but these provide limited I/O rates. While it is not the purpose of this
work to develop improved biotechnology techniques for DNA sequence synthesis and
sequencing, we note this is a key goal for an entire sector of the biotechnology in-
dustry, and therefore it is likely that the capabilities will significantly improve in the
future. One of the most promising is the possible use of large arrays of (perhaps up
to a 1, 000) DNA chips. Each DNA chip can have up to 100, 000 individually ad-
dressed locations, each capable of light-directed chemical synthesis of DNA strands.
Similar technology, using fluorescently tagged DNA hybridized to DNA chip anneal-



Challenges and Applications 187

and output, respectively. The TAO and TAE tiles have an interesting property,
namely that certain distinguished single stranded DNA (to be called scaffold
and reporter strands, respectively) wind through all the tiles of a tiling assem-
bly. This property provides a more sophisticated method for input and output
of DNA computations in string tiling assemblies:
(a) Input via Scaffold Strands: We take as input the scaffold strands and
which encode the data input to the assembly computation. (See Figure 3.) They
are long DNA strands capable of serving as nucleation points for assembly. Pre-
formed, multimeric scaffold strands are added to the hybridization/annealing
mixture in place of the monomeric oligo corresponding to the tile’s reporter seg-
ment. The remaining portion of the component ssDNA comprising the tiles are
also added. In the resulting annealing process, tiles assemble around the scaffold
strand, automatically forming a chain of connected tiles which can subsequently
be used as the input layer in a computational assembly.
(b) Output via Reporter Strands: After ligation of the tiling assembly (this
joins together each tiles segments of the reporter strands), the reporter strand
provides an encoding of the output of the tiling assembly computation (and typ-
ically also the inputs). Note this input/output can occur in parallel for multiple
distinct tiling assemblies. Finally, the tiling assembly is disassembled by dena-
turing (e.g., via heating) and the resulting ssDNA Reporter Strands provide the
result (these may be used as scaffold strands for later cycles of assembly compu-
tation, or the readout may be by PCR, restriction cutting, sequencing, or DNA
expression chips).

~270 Å

A B
3X TAO

2X TAO

2X Oligo-1

3X Oligo-1

MW Stds.   1     2    3     4

3X TAO

2X TAO

350

100

50

200

Fig. 12. Use of scaffold strands in assemblies.

4.7 One Dimensional DNA Tiling Computations or Parallel
Arithmetic

We now outline (See Figure 13.) procedures for using the string tiles described
above that self-assemble into linear tiling assemblies to perform massively par-
allel arithmetic. [LaBean, et al 99] describes string tile systems that compute

ing arrays, can be used for output of DNA information to conventional media. This
could potentially provide up to approximately a factor of 100, 000, 000 parallelism
in I/O. See [Reif, et al, 2000] for a discussion of these techniques and for methods
for error-correction methods for DNA chip synthesis).



188 J.H. Reif, T.H. LaBean, and N.C. Seeman

binary number addition (where the binary numbers are encoded by strands of
DNA) by using two distinct sets of sticky-ends between adjacent tiles in the as-
sembly to effectively communicate the values of the carry-bits. (They can also be
used for computation of bit-wise XOR of Boolean vectors encoded by strands of
DNA.) The assemblies result in the appending of these strands to the addition
sums. For computations on specific inputs, these procedures make use of the
scaffold strands mentioned above. The inputs will be self-assembled strands of
DNA composed of sequences DNA words encoding the pairs of binary numbers
to be summed. Otherwise, the input tiles can be (using known techniques uses
for the assembly of combinatorial libraries of DNA strands) randomly assembled
and thereby generate a molecular look-up table in which each reporter strand
encodes the random inputs and resultant outputs of a single calculation. After
denaturing the assemblies back to individual strands, one may sample the result-
ing reporter strands to verify the outputs are correctly computed. A sufficient
number of DNA tile molecules will provide full coverage of all possible n-bit in-
put strings. Such look-up tables may be useful as input for further computations
as they represent a unique library of sequences with a complex structural theme.
An experimental demonstration of this tiling is described in [Mao, LaBean, Reif,
and Seeman, 2000].

$

$

c0 c0 c0c1

0
1

$ $

1      0     1   $   0     1     1   $   0     0      1   =    IA  $  OR  $  IB

  101
+001
  110

tile c
i
 IAi IBi

   Oi ci+1  

 1   0  0  0    0  0
 2   0  0  1    1  0
 3   0  1  0    1  0
 4   0  1  1    0  1
 5   1  0  0    1  0
 6   1  0  1    0  1
 7   1  1  0    0  1
 8   1  1  1    1  1 carry out

IAi

IBi

Oi

~c1i+1

c2i+1

~c3i+1

c1i

~c2i

c3i

{ {

carry in

Fig. 13. String Tile Addition with TAE Building Blocks. Upper left shows the truth
table for addition; one tile type will be required for each row in the table. Upper right
shows a schematic of a tile including the sequence positions for encoding values for input
bits (IAi and IBi), the output bit (Oi), and the carry bit values on the tile’s sticky-ends.
The center schematic shows a five tile complex carrying out the addition of two 3-bit
numbers. Arrows indicate the trace of the reporter strand as it winds through the entire
assembly three times. The left and right extreme tiles act to reroute the reporter strand
back through the lattice. The two corner tiles have been successfully built and shown to
properly associate with one another.



Challenges and Applications 189

4.8 Two Dimensional DNA Tiling Computations

In the immediate future, it may be possible to extend the one dimensional DNA
tiling assembly methods to two dimensional tilings, and to demonstrate these
methods experimentally. One interesting goal is integer multiplication. The most
direct and relatively straightforward way is to multiply via repeated additions
and bit shifts, applying known VLSI systolic array architecture designs for inte-
ger multiplication. This would require a two dimensional n× n tiling assembly,
with some increased complexity over the linear assembly for integer addition.
Two dimensional computational tilings may also be used to do logical process-
ing. [Lagoudakis and LaBean,99] proposed a 2D DNA self-assembly for Boolean
variable satisfiability, which uses parallel construction of multiple self-assembling
2D DNA lattices to solve the problem. Such methods for solving combinatorial
search problems do not scale well with the input size (the number of parallel
tiling assemblies grows exponentially with the number of Boolean variables of
the formula). However, similar constructions may be used for evaluating Boolean
queries and circuits in massively parallel fashion, for multiple input settings of
the input Boolean variable, and in this context it may be appropriate to consider
the Boolean formulas a to be of fixed size.

4.9 Three Dimensional DNA Tiling Computations

There are number of possible methods for executing computations experimen-
tally on 3D DNA lattices, providing computations with (implicit) data movement
in three dimensions. Matrix inner produc might be executed by a three dimen-
sional computational tiling by applying known VLSI systolic array architecture
designs for matrix inner product. Another possible three dimensional compu-
tational tiling is that of the time-evolution (time is the third dimension of the
tiling) of a two dimensional cellular automata (e.g., a two dimensional cellular
automata simulation of fluid flow).

4.10 Recycling of the Component ssDNA

In principle, after a cycle of tiling assembly and disassembly, the component ss-
DNA comprising these tiles can simply be separated (for example, by magnetic
bead separation), and reused for further cycles of assembly computations. For
non-computational tiling assemblies, heat cycling has exactly this affect, and
a few such cycles does not appear to result in noticeable degradation of the
component ssDNA. Such re-cycling methods might be used for computational
tiling assemblies, though there seems no apparent reason why there would be
more degradation in this case of computational assemblies. (If ssDNA degrada-
tion does occur over many cycles, one may need to consider methods for repair,
such as enzymatic repair of component ssDNA.) Another possibly serious issue
is that of contaminating the ‘result’ ssDNA holding the results of successive
computations; for example these result ssDNA strands may be contaminated by
partial products due to incomplete ligation of the tiling assembly. In principle,



190 J.H. Reif, T.H. LaBean, and N.C. Seeman

these errors might be corrected by additional steps that provide purification of
the result ssDNA (e.g., separate out the ssDNA of the correct mass or having
specific primers at the start and end of the calculation to amplify the correct
answer by PCR) using conventional recombinant DNA techniques. Varied DNA
backbones [e.g., Neilsen, 1995] may prove another approach to increasing the
covalent stability

4.11 Arrays of Finite State Machines

A DNA array of motors, as described in the previous section, may offer a mech-
anism to do DNA computation of arrays whose elements (the tiles) hold state.
That is, the DNA assemblies may be able to simulate a parallel computing model
known as cellular automata, which consist of arrays of finite state automata, each
of which holds state. The transitions of these automata and communication of
values to their neighbors might be done by conformal (geometry) changes, again
using this programmability. There are numerous examples of 1 D (2 D, respec-
tively) cellular automata that can do computations for which tiling assemblies
would have required a further dimension (for example, integer multiplication in
one dimension instead of two).

5 The Kinetics and Error Control in Self-Assembled
Tiling Assemblies

5.1 Kinetics of Self-Assembled Tiling Assemblies

In spite of an extensive literature on the kinetics of the assembly of regular
crystalline lattices, the fundamental thermodynamic and kinetic aspects of self-
assembly of tiling assemblies are not yet well understood. For example, it is not
yet known the affect of distinct tile concentrations and different relative numbers
of tiles, and the possible application of Le Chatelier’s principle.

Winfree [W98] developed computer simulation of tiling self-assemblies. This
software makes a discrete time simulation of the tiling assembly processes,
using approximate probabilities for the insertion or removal individual tiles
from the assembly. These simulations provide an approximation to the ki-
netics of self-assembly chemistry. Using this software as a basis, Guangwei
Yuan at Duke developed improved simulation software with a Java interface
(http://www.cs.duke.edu/∼yuangw/project/test.HTML ) for a number of ex-
ample tilings, such as string tilings for integer addition and XOR computations.
This simulation software was recently speed up by use of an improved method
for computing on/of likelihood, as suggested by Winfree.

The meso-scale tiling experiments described in Section 1 have used mechan-
ical agitation with shakers to provide a temperature setting for the assembly
kinetics (that is, a temperature setting is made by fixing the rate and intensity
of shaker agitation). These meso-scale tilings also have potential to illustrate
fundamental thermodynamic and kinetic aspects of self-assembly chemistry.



Challenges and Applications 191

5.2 Error Control in Self-Assembled Tiling Assemblies

As stated above, two dimensional self-assembled non-computational tilings have
been demonstrated (and imaged via atom force microscopy) that involve up to
a hundred thousand tiles. Certain of these appear to suffer from relatively low
defect rates, perhaps in the order of less than a fraction of a percentage or less.
The factors influencing these defect rates are not yet well understood and there
are no known estimates on the error-rates for self-assembled computation tilings,
since such tilings have been achieved only very recently and have only been
done on a very small scale(error rates appear to be less than 5% [Mao et al 00]).
There is reason (see the construction of a potential assembly blockage described
in [Reif, 98]) to believe that in computational tilings, defect errors may be more
prevalent; and moreover, they can have catastrophic effects on the computation.
Experiments need to be done to determine the error rates of the various types
of self-assembly reactions, both computational and non-computational.

There are a number of possible methods to decrease errors in DNA tilings.
It is as yet uncertain which methods will turn out to be effective and it is likely
that a combination of at least a few of the following methods will prove most
effective.
(a) Error Control by Annealing Temperature Variation. This is a well
known technique used in hybridization and also crystallization experiments. It
is likely that this will provide some decrease in defect rates at the expense in
increased overall annealing time duration. In the context of DNA tiling lattices,
the parameters for the temperature variation that minimize defects have not yet
been determined.
(b) Error Control by Improved Sequence Specificity of DNA Anneal-
ing. The most obvious methodology here is to improve the choice of the DNA
words used for tile pads (that is, to decrease the likelihood of incorrect hy-
bridizations from non-matching pads).DNA word design software for DNA tiles
was developed by Winfree. This software has recently been improved by Horatiu
Voicu at Duke University (see http://www.cs.duke.edu/∼hvoicu/app.html) to
include more realistic models of DNA hybridization, and was also speed up by
use of a technique of Rajasakaran and Reif [RR95] known as nested annealing.
Another possible approach is to use the observation and experimental evidence
of [Herschlag 91] that stressed DNA molecules can have much higher hybridiza-
tion fidelity (sequence specificity) than a relaxed molecule. This would entail
redesigning DNA tiles, so their pads are strained single stranded loop segments
with higher sequence specificity, or by the use of stressed DNA motifs known as
“PX dumbbells” [Shen, Z. Ph.D. Thesis, NYU, 1999].
(c) Error Control by Redundancy. There are a number of ways to introduce
redundancy into a computational tiling assembly. One simple method that can be
developed for linear tiling assemblies, is to replace each tile with a stack of three
tiles executing the same function, and then add additional tiles that essentially
‘vote’ on the pad associations associated with these redundant tiles. This results
in a tiling of increased complexity but still linear size. This error resistant design



192 J.H. Reif, T.H. LaBean, and N.C. Seeman

can easily be applied to the integer addition linear tiling described above, and
similar redundancy methods may be applied to higher dimension tilings.
(d) Error Control by Free Versus Step-wise Assembly. Self-assembly may
be restricted so that certain assembly reactions can proceed only after others
have been completed (serial (or step-wise) self-assembly). Alternatively, self-
assembly reactions may be limited by no such restrictions free self-assembly).
It is expected, but unproven, that free self-assembly is faster than serial self-
assembly. [Reif, 98] suggested the use of serial self-assembly to decrease errors
in self-assembly. There is not yet any experimental data on the error rates of
self-assembly reactions and error control/repair of ‘self-assembly’ versus ‘serial-
assembly’. To decrease the human effort in serial assembly, assembly steps might
be executed automatically with the use of a robotic machines (E.g., the Nanogen
machine, which employs a chip that contains DNA sequences above electrodes.
Tile components hybridized to these DNA sequences can be released in sequence
by making the electrode sufficiently negative.).
(e) Use of DNA Lattices as a Reactive Substrate for Error Repair. DX
complexes and lattices have been used successfully as substrates for enzymatic
reactions including restriction cleavage and ligation of exposed hairpins attached
to the tiles [Liu99a]. One approach is the use of DNA lattices to execute a broader
class of reactions. For example, if restriction enzymes, topoisomerases or site-
specific recombinases can be shown to operate on exposed portions of the DNA
lattices, then it may be possible to modify the topology and geometry of the
DNA lattice. This may aid in the DNA tiling computations described above, for
example by providing mechanisms for error repair in DNA tiling computations.
(Note: as mentioned above, this approach may also be of use for recycling of the
component ssDNA for the next computation cycles.)

6 Conclusion

We have discussed the potential advantages of self-assembly techniques for DNA
computation; particularly the decreased number of laboratory steps required.
We also discussed the potential broader technological impacts of DNA tiling
lattices and identify some further possible applications. The chief difficulties are
that of error control and predicable kinetics, as described in the previous section.
Nevertheless, the self-assembly of DNA tilings seems a very promising emerging
method for molecular scale constructions and computation.

References

1. Adleman, L., Molecular Computation of Solution to Combinatorial Problems, Sci-
ence, 266, 1021, (1994).

2. Aviram and M. Ratner ( Eds), Molecular Electronics: Science and Technology,
Annals of the New York Academy of Sciences, New York, Vol. 852 (1998).



Challenges and Applications 193

3. Bachand, G.D., and Montemagno, C.D. Constructing organic/inorgancis NEMS
devices powered by bio-molecular motors. Biomedical Microdevices, in press,
(2000).

4. Bachand, G. D., and Montemagno, C. D. Constructing biomolecular motor-
powered, hybrid NEMS devices. Technical Proceedings of the International
Symposium on Microelectronics and Micro Electro Mechanical Systems (MI-
CRO/MEMS). Queensland, Australia, (1999).

5. Berger, R. The Undecidability of the Domino Problem, Memoirs of the American
Mathematical Society, 66 (1966).

6. S. Blawas, T. F. Oliver, M. C. Pirrung, and W. M. Reichert, Step-and-repeat
Photopatterning of Protein Features Using Caged-biotin-BSA: Characterization
and Resolution, Langmuir, 14, 4243 (1998).

7. Bowden, N.; Brittain, S.; Evans, A. G., Hutchinson, J. W. and Whitesides, G. M.
Spontaneous formation of ordered structures in thin films of metals supported on
an elastomeric polymer, Nature 1998,393, 146-149.

8. Buchi, J.R Turing Machines and the Entscheidungsproblem, Mathematiche An-
nalen, 148, 201-213, (1962).

9. Brockman, J.M.; Frutos, A.G. and Corn, R.M. A Multi-Step Chemical Modification
Procedure to Create DNA Arrays on Gold Surfaces for the Study of Protein-DNA
Interactions with Surface Plasmon Resonance Imaging, J. Am. Chem. Soc., 121
8044-8051 (1999).

10. Bumm, L. A. and P. S. Weiss, Positioning Atoms and Molecules
without Lithography: Self-Assembly and Directed Assembly, invited
manuscript in preparation for Superlattices and Nanostructures, (2000).
http://stm1.chem.psu.edu/∼psw/papers/ DirectAsmblyJACS99.pdf

11. Bumm, L. A., J. J. Arnold, L. F. Charles, T. D. Dunbar, D. L. Allara, and P.
S. Weiss, Directed Self-Assembly to Create Molecular Terraces with Molecularly
Sharp Boundaries in Organic Monolayers, Journal of the American Chemical So-
ciety 121, 8017 (1999). (ABSTRACT)

12. J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Observation of a Large On-
Off Ratio and Negative Differential Resistance in an Molecular Electronic Device,
Science, Vol 286, 19, Nov. 1999, p 1550–1552.

13. Clelland, C.T., Risca, V., and C. Bancroft. Genomic Steganography: Amplifiable
Microdots. Under review by Nature, 1999.

14. E. Coven, N. Jonoska: DNA Hybridization, Shifts of Finite type and Tiling of the
Integers, (to appear in: Words, Sequences, Languages: where computer science and
linguistics meet, published by Kluwer, edited by Carlos Martin-Vide).

15. Du, S.M., S. Zhang and N.C. Seeman, DNA Junctions, Antijunctions and Meso-
junctions, Biochem., 31, 10955–10963, (1992).

16. Eng, T., Linear DNA self-assembly with hairpins generates the equivalent of linear
context-free grammars, 3rd DIMACS Meeting on DNA Based Computers, Univ.
of Penn., (June, 1997).

17. Faulhammer, D., Cukras, A.R., Lipton, R.J. and Landweber, L.F., Molecular com-
putation: RNA solutions to chess problems, Proc. Nat. Acad. Sci. (USA) 97, 1385-
1389 (2000).

18. Fu, T.-J., and N.C. Seeman, DNA Double Crossover Structures, Biochemistry, 32,
3211-3220, (1993).

19. Garey, M. R., and D. S. Johnson Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H Freeman and Company, page 257, (1979).



194 J.H. Reif, T.H. LaBean, and N.C. Seeman

20. Gehani, A and J.H. Reif, Microflow Bio-Molecular Computation, 4th DIMACS
Workshop on DNA Based Computers, University of Pennsylvania, June, 1998.
DNA Based Computers, IV, DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, (ed. H. Rubin), American Mathematical Society, 1999.
Appeared also in Biosystems, Journal of Biological and Informational Processing
Sciences, Vol. 52, Nos. 1-3, (ed. By L. Kari, H. Rubin, and D. H. Wood), pp 197-
216, (1999). www.cs.duke.edu/ ∼reif/paper/geha/microflow.ps

21. Gehani, A., T. H. LaBean, and J.H. Reif, DNA-based Cryptography,
5th DIMACS Workshop on DNA Based Computers, MIT, June, 1999.
DNA Based Computers, V, DIMACS Series in Discrete Mathematics and
Theoretical CS (ed. E. Winfree), American Mathematical Society, 2000.
www.cs.duke.edu/∼reif/paper/DNAcrypt/crypt.ps

22. Gillmor, S.D., Liu, Q., Thiel, A.J., Condon, A.E., Corn, R.M., Smith, L.M. and La-
gally, M.G. Hydrophobic/Hydrophilic Patterned Surfaces to Create DNA Arrays,
to be submitted (to Langmuir), 1999.

23. Grunbaum, S., Branko, and G.C. Shepard, Tilings and Patterns, H Freeman and
Company, Chapter 11, (1987).

24. Harada, K. and Orgel, L.E., Unexpected substrate specificity of T4 DNA ligase
revealed by in vitro selection, Nucleic Acids Res 21, 2287-2291 (1993).

25. Harder, P.; Grunze, M.; Dahint, R.; Whitesides, G. M. and Laibinis, P. E., Molecu-
lar Conformation in Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers
on Gold and Silver Surfaces Determines Their Ability To Resist Protein Adsorp-
tion, J. Phys. Chem. B 1998,102, 426-436.

26. D. Herschlag (1991), Implications of ribozyme kinetics for targeting the cleavage
of specific RNA molecules in vivo, Proc. Nat. Acad. Sci. (USA), 88, pp. 6921-6925.

27. Jhaveri, S., Kirby, R., Conrad, R., Magion, E.J., Glick, G., Ellington, A.D. (1999)
Signaling aptamers. Accepted to JACS.

28. Jonoska, N., S. Karl, M. Saito: Creating 3-Dimensional Graph Structures With
DNA in DNA based computer III (Editors: H. Rubin, D. Wood) DIMACS series
in Discrete Math. and Theoretical Comp. Sci. vol 48 (1999) 123-136.

29. Jonoska, N., S. Karl, M. Saito: Three dimensional DNA structures in computing
(to appear in BioSystems).

30. Jonoska, N., 3D DNA patterns and Computing (to appear) collection of papers
on Patterns in Biology edited by M. Gromov and A. Carbone (to be published by
World Scientific).

31. Jonoska, N., S. Karl: Ligation Experiments in Computing with DNA, Proceedings
of 1997 IEEE International Conference on Evolutionary Computation (ICEC’97),
April 13-16, (1997) 261-265.

32. Jonoska, N., S. Karl: A molecular computation of the road coloring problem in
DNA based computer II (Editors: L. Landwaber, E. Baum) DIMACS series in
Discrete Math. and Theoretical Comp. Sci. vol 44 (1999) 87 - 96,

33. Jonoska, N., S. Karl, M. Saito: Graph structuires in DNA computing in Computing
with Bio-Molecules, theory and experiments, (editor Gh. Paun) Springer-Verlag
(1998), 93-110.

34. Jonoska, N., Sofic Shifts with Synchronizing Presentations, Theoretical Computer
Science vol. 158 1-2 (1996) 81-115.

35. Jonoska, N., Constants in factorial and prolongable languages, Pure Math. Appl.
vol 7 1-2 (1996) 99-110.



Challenges and Applications 195

36. LaBean, T. H., E. Winfree, J. H. Reif, Experimental Progress in Com-
putation by Self-Assembly of DNA Tilings, 5th International Meeting on
DNA Based Computers(DNA5), MIT, Cambridge, MA, (June, 1999). To ap-
pear in DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, ed. E. Winfree, to appear American Mathematical Society, 2000.
http://www.cs.duke.edu/∼thl/tilings/labean.ps

37. LaBean, T. H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H. and Seeman,
N.C., The construction, analysis, ligation and self-assembly of DNA triple crossover
complexes, J. Am. Chem. Soc. 122, 1848-1860 (2000).
www.cs.duke.edu/∼reif/paper/DNAtiling/tilings/JACS.pdf

38. Lagoudakis, M. G., T. H. LaBean, 2D DNA Self-Assembly for Satisfiability, 5th
International Meeting on DNA Based Computers(DNA5), MIT, Cambridge, MA,
(June, 1999). DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol.44, American Mathematical Society, ed. E. Winfree, (1999).

39. Lewis, H.R., and C.H. Papadimitriou, Elements of the Theory of Computation,
Prentice-Hall, pages 296-300 and 345-348 (1981).

40. Li, X.J., X.P. Yang, J. Qi, and N.C. Seeman, Antiparallel DNA Double Crossover
Molecules as Components for Nanoconstruction, J. Am. Chem. Soc., 118, 6131-
6140, (1996).

41. Liu, F., H. Wang and N.C. Seeman, Short Extensions to Sticky Ends for DNA
Nanotechnology and DNA-Based Computation, Nanobiology 4, 257-262 (1999).

42. Liu, F., R. Sha and N.C. Seeman, Modifying the Surface Features of Two-
Dimensional DNA Crystals, J. Am. Chem. Soc. 121, 917-922 (1999).

43. Liu, F., M.F. Bruist and N.C. Seeman, Parallel Helical Domains in DNA Branched
Junctions Containing 5’, 5’ and 3’, 3’ Linkages, Biochemistry 38, 2832-2841 (1999).

44. Liu, Q., Wang, L., Frutos, A.G., Condon, A.E., Corn, R.M. and Smith, L.M., DNA
computing on surfaces, Nature 403, 175-179 (2000).

45. Mao, W. Sun, Z. Shen and N.C. Seeman, A DNA Nanomechanical Device Based
on the B-Z Transition, Nature 397, 144-146 (1999).

46. Mao, C., W. Sun, and N.C. Seeman, Construction of Borromean Rings from DNA,
Nature, 386(6621), 137-138, (March,1997).

47. Mao, W. Sun and N.C. Seeman, Designed Two-Dimensional DNA Holliday Junc-
tion Arrays Visualized by Atomic Force Microscopy, J. Am. Chem. Soc. 121, 5437-
5443 (1999).

48. Mao, C., T.H. LaBean, J. H. Reif, and N.C. Seeman, An Algorithmic Self-Assembly,
Nature, Sept 28, (2000).
www.cs.duke.edu/∼reif/paper/SELFASSEMBLE/AlgorithmicAssembly.pdf

49. Montemagno, C. D., and Bachand, G. D. Constructing nanomechanical devices
powered by biomolecular motors. Nanotechnology 10: 225-331 (1999).

50. Montemagno, C. D., Bachand, G. D., Stelick, S. J., and Bachand, M. Constructing
biological motor powered nanomechanical devices. Sixth Foresight Conference on
Molecular Nanotechnology, (1998).

51. Moore, C. and J. M. Robson, Hard Tiling Problems with Simple Tiles, to appear,
2000.

52. Neilsen, P.E., Peptide Nucleic Acids, Ann. Rev. Biophys. and Biophys. Chem. 1995
14, 167-183.

53. Petty, M. C., M. R. Bryce and D. Bloor (Eds.), An Introduction to Molecular
Electronics, Oxford University Press, New York (1995).

54. Reed, M. A., C. Zhou, C. J. Muller, T. P. Burgin and J. M. Tour, Conductance of
a molecular junction, Science, Vol. 278, pages 252–254, October 10, 1997.



196 J.H. Reif, T.H. LaBean, and N.C. Seeman

55. Reed, M. A. and J. M. Tour Computing with Molecules, Scientific American, June
2000. http://www.scientificamerican.com/2000/0600issue/0600reed.html

56. Reif, J.H., Local Parallel Biomolecular Computation, Third Annual DIMACS
Workshop on DNA Based Computers, University of Pennsylvania, June 23-26,
1997. Published in DNA Based Computers, III, DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, Vol 48 (ed. H. Rubin), American Math-
ematical Society, 1999, p 217-254. Postscript versions of this paper and its figures
are at http://www.cs.duke.edu/∼reif/paper/Assembly.ps and Assembly.fig.ps

57. Reif, J.H., Parallel Molecular Computation: Models and Simulations. Pro-
ceedings: 7th Annual ACM Symposium on Parallel Algorithms and Archi-
tectures (SPAA’95) Santa Barbara, CA, July 1995, pp. 213-223. Published
in Algorithmica, special issue on Computational Biology,25:142-176, 1999.
www.cs.duke.edu/∼reif/paper/Molecular.ps

58. Reif, J.H., Synthesis of Parallel Algorithms. 22 chapters, 1011 pages. Published by
Morgan Kaufmann, Spring, 1993.

59. Reif, J.H., Paradigms for Biomolecular Computation, First International Confer-
ence on Unconventional Models of Computation, Auckland, New Zealand, January
1998. Published in Unconventional Models of Computation, edited by C.S. Calude,
J. Casti, and M.J. Dinneen, Springer Publishers, 1998, pp 72-93.
http://www.cs.duke.edu/∼reif/paper/paradigm.ps

60. Reif, J.H., and T. H. LaBean, Computationally Inspired Biotechnologies: Improved
DNA Synthesis and Associative Search Using Error-Correcting Codes and Vector-
Quantization, Sixth International Meeting on DNA Based Computers (DNA6), DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, Leiden,
The Netherlands, (June, 2000) ed. A. Condon. To be published by the American
Mathematical Society, 2000. www.cs.duke.edu/∼reif/paper/Error-Restore/Error-
Restore.ps

61. Reif, J.H. and Zheng Sun, Nano-Robotics Motion Planning and
Its Applications in Nanotechnology and Biomolecular Computing,
NSF Design & Manufacturing Grantees Conference, Jan 5-8, 1999.
http://www.cs.duke.edu/∼reif/paper/NanoRobotics.html

62. Robinson, R.M. Undecidablility and Nonperiodicity for Tilings of the Plane, In-
ventiones Mathematicae, 12, 177-209, (1971).

63. Rothemund, P.W.K., Using lateral capillary forces to compute by self-assembly,
Proc. Nat. Acad. Sci. (USA) 97, 984-989 (2000a).

64. Rothemund, P.W.K., and E. Winfree, The Program-Size Complexity of Self-
Assembled Squares, Symposium on Theory of Computing(STOC 2000), Portland,
OR, (May, 2000b).

65. Roweis, S. E. Winfree. On the reduction of errors in DNA computation. Journal
of Computational Biology, 6(1): 65–75, 1999.

66. Roweis, S. E. Winfree, R. Burgoyne, N. V. Chelyapov, M. F. Goodman, P. W.
K. Rothemund, L. M. Adleman. A Sticker-Based Model for DNA Computation.
Journal of Computational Biology, 5(4): 615–629, 1998

67. Seeman, N.C., Nucleic Acid Nanostructures and Topology. Angewandte Chemie.
110, 3408-3428 (1998); Angewandte Chemie International Edition 37, 3220-3238
(1998).

68. Seeman, N.C., DNA Engineering and its Application to Nanotechnology, Trends
in Biotech. 17, 437-443 (1999).

69. Seeman, N.C. Nucleic Acid Junctions and Lattices, J. Theor. Biol., 99, 237-247,
(1982).



Challenges and Applications 197

70. Seeman, N. C., J. Chen, S.M. Du, John E. Mueller, Yuwen Zhang, Tsu-Ju Fu, Yinli
Wang, Hui Wang,Siwei Zhang, Synthetic DNA knots and catenanes, New Jour. of
Chemistry, 17, 739-755, (1993).

71. Seeman, N. C., J.-H. Chen, N.R. Kallenbach, Gel electrophoretic analysis of DNA
branched junctions, Electrophoresis, 10, 345-354, (1989).

72. Seeman, N. C., F. Liu, C. Mao, X. Yang, L.A. Wenzler, R. Sha, W. Sun, Z. Shen, X.
Li, J. Qi, Y. Zhang, T. Fu, J.-H. Chen, and E. Winfree, Two Dimensions and Two
States in DNA Nanotechnology, Journal of Biomolecular Structure and Dynamics,
ISSN 0739-1102, Conversion 11, Issue 1, June, 1999.

73. Seeman, N. C., H. Wang, X. Yang, F. Liu, C. Mao, W. Sun, L.A. Wenzler, Z. Shen,
R. Sha, H. Yan, M.H. Wong, P. Sa-Ardyen, B. Lui, H. Qiu, X. Li, J. Qi, S.M. Du,
Y. Zhang, J.E. Mueller, T.-J. Fu, Y. Wang, amd J. Chen, New Motifs in DNA
nanotechnology, Nanotechnology 9, p 257-273 (1998).

74. Seeman, N. C., H. Wang, B. Liu, J. Qi, X. Li, X. Yang, F. Liu, W. Sun, Z. Shen,
R. Sha, C. Mao, Y. Wang, S. Zhang, T.-J. Fu, S. Du, J. E. Mueller, Y. Zhang,
and J. Chen, The Perils of Polynucleotides: The Experimental Gap Between the
Design and Assembly of Unusual DNA Structures, The 2nd Annual Workshop on
DNA Based Computers, American Mathematical Society, June 1996.

75. Seeman, N. C., Y. Zhang, and J. Chen, DNA nanoconstructions, J. Vac. Sci. Tech-
nol., 12:4, 1895-1905, (1994).

76. Seeman, N. C., Y. Zhang, S. Du, H. Wang, J.E. Mueller, and J. Chen, The control
of DNA structure and topology: An overview, Mat. Res. Soc. Symp. Proc., 356,
57-66, (1994). H. Wang, Proving Theorems by Pattern Recognition, Bell System
Technical Journal, 40, 1-141, (1961).

77. Sha, R., F. Liu, M.F. Bruist and N.C. Seeman, Parallel Helical Domains in DNA
Branched Junctions Containing 5’, 5’ and 3’, 3’ Linkages, Biochemistry 38, 2832-
2841 (1999).

78. Smith, L. M. , R. M. Corn, A. E. Condon, M. G. Lagally, A. G. Frutos, Q. Liu, and
A. J. Thiel, A Surface-Based Approach to DNA Computation. J. Computational
Biology, 5(2), 255-266. 1998.

79. Soong, R. K., Stelick, S. J., Bachand, G. D., and Montemagno, C. D. Evaluating
adhesion strength of biological molecules to nanofabricated substrates. Technical
Proceedings of the Second Conference on Modeling and Simulation of Microsystems
99 Conference; Puerto Rico (1999).

80. Sun, W., C. Mao, F. Liu and N.C. Seeman, Sequence Dependence of Branch Mi-
gratory Minima. J. Mol. Biol. 282, 59-70 (1998).

81. Wang, H., In Proc. Symp. Math. Theory of Automata, 23-26 (Polytechnic Press,
New York, 1963).

82. Wang, Y., J.E. Mueller, B. Kemper, and N.C. Seeman, Assembly and characteri-
zation of five-arm and six-arm branched junctions, Biochem. 30, 5667-5674 (1991)

83. Winfree, E. Simulations of Computing by Self-Assembly. In Proceedings of the
Fourth Annual Meeting on DNA Based Computers, held at the University of Penn-
sylvania, June 16-19, 1998.

84. Winfree, E., X. Yang, N.C. Seeman, Universal Computation via Self-assembly of
DNA: Some Theory and Experiments, 2nd Annual DIMACS Meeting on DNA
Based Computers, Princeton, June, 1996.

85. Winfree, E., T. Eng, G. Rozenberg String tile models for DNA computing by self-
assembly, unpublished notes, September 1998.

86. Winfree, E., Furong Liu, Lisa A. Wenzler, Nadrian C. Seeman (1998) Design and
Self-Assembly of Two Dimensional DNA Crystals. Nature 394: 539–544, 1998.



198 J.H. Reif, T.H. LaBean, and N.C. Seeman

87. Winfree, E., Xiaoping Yang, Nadrian C. Seeman. Universal Computation via Self-
assembly of DNA: Some Theory and Experiments. In DNA Based Computers II:
DIMACS Workshop, June 10-12, 1996 (Volume 44 in DIMACS). Laura F. Landwe-
ber and Eric B. Baum, editors. American Mathematical Society, 1998, pp. 191–213.

88. Winfree, E., On the Computational Power of DNA Annealing and Ligation. In
DNA Based Computers: Proceedings of a DIMACS Workshop, April 4, 1995,
Princeton University (Volume 27 in DIMACS). Richard J. Lipton and Eric B.
Baum, editors. American Mathematical Society, 1996, pp. 187–198.

89. Winfree, E., F. Liu, L. A. Wenzler, and N.C. Seeman, Design and Self-Assembly
of Two-Dimensional DNA Crystals, Nature 394, 539-544 (1998).

90. Winfree, E., 5th International Meeting on DNA Based Computers(DNA5), MIT,
Cambridge, MA, (June, 1999). To appear in DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, ed. E. Winfree, (1999).

91. Xia, Y. and Whitesides, G. M., Angew. Soft Lithography, Chem. Int. Ed. Engl.
1998,37, 550-575.

92. Xia, Y. and Whitesides, G. M., Soft Lithography, Annu. Rev. Mater. Sci. 1998,28,
153-184. Yan, L.; Zhao, X.-M. and Whitesides, G. M. Patterning a Preformed,
Reactive SAM Using Microcontact Printing, J. Am. Chem. Soc. 1998,120, 6179-
6180.

93. Yang, X., L.A. Wenzler, J. Qi, X. Li and N.C. Seeman, Ligation of DNA Triangles
Containing Double Crossover Molecules, J. Am. Chem. Soc. 120, 9779-9786 (1998).

94. Zhao, X.; Votruba, P.G.; Strother, T.C.; Ellison, M.D.; Smith, L.M. and Hamers,
R.J. Formation of Organic Films on Si(111) Surfaces via Photochemical Reaction
(in preparation), 1999.

95. Zhou, C. , et al., Appl. Phys. Lett. 71, 611 (1997).
96. Zhou, C. , Atomic and Molecular Wires, Ph.D. thesis, Yale University (1999).



A Space-Efficient Randomized DNA Algorithm
for k-SAT

Kevin Chen?1 and Vijay Ramachandran??2

1 Department of Electrical Engineering and Computer Sciences, University of
California at Berkeley, Berkeley, CA 94720, USA, kevinc@eecs.berkeley.edu

2 Department of Computer Science, Yale University, New Haven, CT 06520, USA,
vijayr@cs.yale.edu

Abstract. We present a randomized DNA algorithm for k-SAT based on
the classical algorithm of Paturi et al. [8]. For an n-variable, m-clause in-
stance of k-SAT (m > n), our algorithm finds a satisfying assignment, as-
suming one exists, with probability 1−e−α, in worst-case time O(k2mn)
and space O(2(1− 1

k
)n+log α). This makes it the most space-efficient DNA

k-SAT algorithm for k > 3 and k < n/ log α (i.e. the clause size is small
compared to the number of variables). In addition, our algorithm is the
first DNA algorithm to adapt techniques from the field of randomized
classical algorithms.

1 Introduction

Ever since Lipton [4] showed how to solve Formula-SAT (of which k-SAT is a
special case) with a DNA computer, a great deal of research within the field
of DNA computing has been directed towards the design and implementation
of SAT algorithms. Until Ogihara [6], however, all of these algorithms required
that all 2n possible solutions be generated initially. This implies an upper limit of
about 50 variables on the size of the problem instance given the state of current
biotechnology. In this paper, we follow Ogihara’s strategy of generating putative
solutions during the course of the algorithm, thereby reducing the number of
strands required to be present at any one time during the computation and
allowing us to solve larger instances of SAT.

1.1 Classical SAT Algorithms

The first complete1 SAT algorithms to be discovered were the Davis-Putnam
algorithm (DP) [3] and the closely related Davis-Logemann-Loveland (DLL)
? This work was done while at the Department of Computer Science, Princeton Uni-

versity, Princeton, NJ 08544, USA.
?? This work was done while at the Department of Mathematics, Princeton University,

Princeton, NJ 08544, USA.
1 A complete algorithm, as opposed to a heuristic, is guaranteed to find a solution if

it exists. However, heuristics typically run much faster than complete algorithms.

A. Condon (Ed.): DNA 2000, LNCS 2054, pp. 199–208, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



200 K. Chen and V. Ramachandran

algorithm [2]. Although both algorithms have been the subject of intense study
in the last three decades, neither, surprisingly, has a proven worst-case time
complexity. Nevertheless, their importance is such that virtually all of the most
important complete SAT algorithms are more or less refined versions of DP
and DLL. Monien and Speckenmeyer [5] gave the first improvement over DP
and DLL, followed by a series of improved algorithms by Schiermeyer (1992),
Kullman (1996), Schiermeyer (1996) and Paturi [8,7].

DP and DLL recursively branch on each variable by assigning the current
variable the value “true” in one branch and “false” in the other. The computation
may be viewed as a binary tree in which nodes represent the variables on which
the algorithm branches and the edges represent assignments to the variables.
At each branch point, the formula is simplified using a few simple rules. DP
is based on the following two: 1) If the formula has a clause with only one
literal, assign the variable of the literal the truth-value that satisfies the clause;
2) If some variable appears only positively, assign it the value “true”, and if it
appears only negatively, assign it the value “false”. All the other complete SAT
algorithms basically use a more complex set of simplification rules to achieve
their improved time bounds. In particular, Paturi’s algorithm is essentially a
randomized version of DP.

1.2 DNA SAT Algorithms

The first steps towards more space-efficient DNA SAT algorithms were taken by
Ogihara [6]. His paper showed how to implement DP, DLL, and the Monien-
Speckenmeyer algorithm [5] that has space complexity O(20.6942n) and time
complexity O(n · max{m2, n}), in its DNA form. Ogihara used the basic ex-
tract model of Lipton and Adleman plus the additional append primitive. This
extended model was first introduced by Boneh et al. in [1].

In addition, Ogihara gave an algorithm for 3-SAT with running time at most
twice that of Lipton but with unproven space complexity. Computer experiments
suggested a space complexity of about 20.5n and Yoshida and Suyama [9] later
implemented a similar heuristic on a 4-variable, 10-clause 3-SAT instance.

2 Model of Computation

Following Ogihara [6], we use an extended version of the extract model that
includes the append primitive. In addition, for reasons to be clarified in the
next section, we include the additional operations to-single-stranded, that
makes a double-stranded polymer single-stranded, to-double-stranded, that
makes a single-stranded polymer double-stranded, and pour, that divides the
contents of a test tube into more than one test tube, thereby randomly splitting
up the strands.

We assume our variables are x1, x2, . . . , xn and that our SAT instance has m
clauses.



Space-Efficient Randomized DNA Algorithm 201

2.1 Form of DNA Molecules

Our algorithm requires 2n + 3 well-behaved sequences of DNA:

1. A header sequence, h.
2. A separator sequence, s.
3. A primer sequence, p.
4. n “true” sequences, each denoted xTi, representing the assignment “xi =

true”.
5. n “false” sequences, each denoted xFi, representing the assignment “xi =

false”.

We will use the notation a to mean the Watson-Crick complement of sequence
a.

The algorithm requires synthesis of 2n assignment sequences which are used
to append variable assignments to solution strands. There is a true and false
sequence for each variable xi, denoted by b

T/F
i , of the form shown in Fig. 1.

PP SS

S’S’ P’P’ S’S’

x(2)=Fx(2)=F

x(2)=F’x(2)=F’

PP SS

S P S

x(2)=Fx(2)=F

x(2)=F

Fig. 1. Structure of bF2, assignment sequence for “x2 = false”. Each box (s, p, s, and
so on) represents a DNA subsequence discussed in Sect. 2.1. s is the sticky end that
anneals to the s sticky end on the solution strand during an append.

2.2 Operations

The allowable operations are now:

1. append(t, {s1, s2, . . . , sk}): append to the end of each strand in tube t one of
the subsequences s1, s2, . . . , sk. at random. This operation is a generalization
of the standard append introduced by [1]. We use this to append one variable
assignment at a time. See Sect. 3.4 for an implementation of this operation.

2. u ← combine(t1, t2, . . . , tk): combine the contents of tubes t1 through tk
into a single tube u. Tubes t1, . . . , tn are left empty (unless, of course, u = ti
for some 1 ≤ i ≤ k).

3. detect(t): select one strand at random from tube t, if any, and sequence it.
4. u ← extract(t, s): extract from tube t all strands containing the subse-

quence s and place them in tube u. We will normally extract on one of the
sequences listed in Sect. 2.1.

5. {u1, u2, . . . , uk} ← pour(t): pour out, or aliquot, the contents of t into k
equal portions in test tubes u1 through uk. Tube t is left empty.



202 K. Chen and V. Ramachandran

6. to-double-stranded(t): make each of the single-stranded molecules in
tube t double-stranded except for a sticky end. See Sect. 3.4 for an imple-
mentation of this operation, also shown in Fig. 2.

7. to-single-stranded(t): denature each double-stranded molecule in tube t
and remove one strand, leaving the other as a single-stranded molecule in t.
See Sect. 3.4 for an implementation of this operation.

x(5)=T’x(5)=T

HH PP SS x(5)=Tx(5)=T PP SS

HH PP SS x(5)=Tx(5)=T PP SS

HH PP SS x(5)=Tx(5)=T PP SS

HH SS

PP

PP PP

PP

Polymerase will construct the complementary
strand starting with the primer sequence

Original strand

Add complement
of primer sequence

Add DNA Polymerase,
DNA Ligase, and bases
{A, T, C, G}

Fig. 2. Implementation of operation to-double-stranded.

The reason for the increased number of operations used in our model is that
in our algorithm, the assembly of potential solution strands is very involved
whereas this step in most other algorithms is relatively easy. However, all the
biotechniques required to implement these operations are standard procedures
used in other extract-based DNA algorithms.

Finally, we note that our measure of time complexity will be the number of
extract steps in the computation, and the space complexity will be the number
of strands in the system.



Space-Efficient Randomized DNA Algorithm 203

3 Algorithm

First we shall review the randomized classical k-SAT algorithm in [8] and [10]
that we follow. We will then present and analyze our DNA implementation of it.

3.1 Notation and Definitions

x1, x2, . . . , xn are our variables. The length of a clause C = l1 ∨ l2 ∨ · · · ∨ lk, or
|C|, is simply k. Each li ∈ C is a literal, which is either xj or x̄j for some variable
xj . A boolean formula F =

∧m
i=1 Ci is a k-CNF formula if ∀C∈F , |C| ≤ k.

3.2 The Algorithm Search

Given some large integer I and a k-CNF formula F , the algorithm in [8] (called
Search) constructs I putative solutions and tests if they satisfy F . If no solution
is found, the algorithm outputs “unsatisfiable.” The value of I depends on the
error probability of Search and will be discussed at greater length later.

To construct one putative solution, at each iteration Search randomly selects
some unassigned variable xi and applies the unit clause rule from DP, imple-
mented as follows. We say that a variable xi is forced if it appears in some clause
in which all other literals are “false” due to previous assignments. Clearly, if such
a clause exists, F can be satisfied only by assigning xi the value that makes that
clause true, so that assignment is added to the solution. If no such clause exists,
xi is simply assigned a truth value at random. When all variables have been
assigned, Search checks if the putative solution satisfies F .

A condensed version of Search is given below.

Begin Algorithm Search (formula F , positive integer I)
Repeat I times

π = uniformly random permutation of {1, 2, . . . , n}
For i = 1 to n

If xπ(i) is forced Then
set xπ(i) = “true” or “false” as required

Else
set xπ(i) = “true” or “false” randomly

End If
End For
If F is satisfied

output assignment
exit

End If
End Repeat
output ‘Unsatisfiable’ /* No satisfying assignment found after I tries */

End Algorithm



204 K. Chen and V. Ramachandran

3.3 Overview of DNA Implementation

To implement this algorithm in DNA, we construct all I potential solutions
in parallel and then verify them all for correctness, in parallel, using Lipton’s
algorithm [4].

We begin with a tube containing I header sequences. In order to select a
random unassigned variable, we assume that we have on hand n random per-
mutations π1 to πn of the integers 1 to n. At the jth iteration, we pour out the
contents of the tube into n equal portions in tubes t1 to tn, and for each tube
ti we associate the variable xπj(i). For each ti, we would like to assign a value
to xπj(i). However, xπj(i) may have already been assigned a value. To prevent a
variable from being assigned a value twice, for each ti we perform two extracts on
the tube in parallel using the sequences for “xπj(i) = true” and “xπj(i) = false”.
Having removed all strands for which the variable has been previously assigned
from ti, we add these strands to ti+1 and perform the respective extracts on it.
Since the variable associated with ti+1 is picked at random according to πj , we
preserve the randomness in our choice of variable to be considered next. After
performing the two extracts on tn, we add the extracted strands to t1 and re-
peat the process in its entirety once more. After two passes through all n tubes,
each tube contains only strands in which the variable associated with the tube
is unassigned.

To determine the assignment for a strand, we follow Ogihara’s implementa-
tion of the unit clause rule [6]. Consider, for example, a tube ti, and suppose
its associated variable xπj(i) = x1. Then for clause C = x1 ∨ x2 ∨ x3, we need
to extract on “x2 = false” and “x3 = false”. We perform similar extracts for all
other clauses containing x1 or x1. Formally, for each clause C ∈ F containing
xπj(i) or xπj(i), we perform k − 1 extracts in series on ti using the values of the
k− 1 other variables in C that make their corresponding literals in C false. The
extracted strands all are forced to have their value set to “true” because of this
clause C. Forced strands in ti will have the sequence representing the forced as-
signment appended to them. Strands not forced will have a random assignment
for the variable appended to them.

All test tubes are then combined and the process, beginning with the random
selection of an unassigned variable, is repeated until all strands have assignments
for all variables. This occurs after n iterations. Finally, Lipton’s algorithm [4] is
used to select which of the constructed solutions in fact satisfies F .

3.4 Appending Truth Value Assignments

To assign xi a truth value in a putative solution, we append an assignment
sequence b

T/F
i (see Sect. 2.1) to the end of the solution strand. We begin with I

copies of the header strand hps, and each b
T/F
i that we append to our strands

ends with the subsequence ps. Therefore at each step where we perform append,
our solution strands end with the same subsequence s. Since each b

T/F
i has a s

sticky end, it can anneal to that subsequence s. However, our solution strands



Space-Efficient Randomized DNA Algorithm 205

contain multiple occurrences of s, so we must first make them double-stranded
except for the s left exposed at the end.

For this purpose we have the operation to-double-stranded. We imple-
ment this by adding many copies of p to t and then adding DNA polymerase.
This enzyme should create the complement strand beginning with p at the end of
the strand, thus making the solution strands completely double-stranded except
for the sticky end s. (See Fig. 2.) We are now able to add assignment sequences
to the solution, knowing they will anneal to the proper location.

If we want to append a forced assignment to tube t, we can simply add many
copies of the appropriate assignment sequence bi to t. For example, to assign
“x3 = true” to all strands in t, we implement append by adding bT3 to t.

To perform append(t, {bTi, bFi}), where we append “true” or “false” randomly
to each strand, we simply add equal concentrations of both assignment sequences
to t. If equal concentrations of bTi and bFi are added to tube t containing strands
ending with s, the probability that a true (or false) sequence actually anneals to
a given strand should be 1/2. Since our strands are all double-stranded except for
the exposed sticky end s or s, attraction between different parts of our molecules
should not skew this probability. Thus each strand truly receives an assignment
for xi randomly.

We can now revert to single strands (used in the rest of the algorithm) by
performing to-single-stranded(t), which we implement as follows. First add
DNA ligase to t. Then denature the strands in the tube to split each double-
stranded molecule into single strands. Finally, perform extract(t, h) to remove
those strands not containing the header sequence h, thereby preserving only the
original solution strands. These strands now all contain the newly appended
assignment and end in ps, ready for the next append operation.

3.5 The Algorithm DNASearch

The pseudocode for our DNA implementation of Search follows. The notation
defined in section 3.4 is used for DNA sequences throughout the algorithm. In
addition, the sequence yj means the sequence representing an assignment that
makes the literal lj false.

Begin Algorithm DNASearch (formula F , integer s, positive integer I)
t0 ← I copies of hps
For c = 1 to n

π = random permutation of {1, 2, . . . , n}
{t1, t2, . . . , tn} ← pour(t0)
Repeat 2 times

For i = 1 to n
u← extract(ti, x

T
π(i))

u← extract(ti, x
F
π(i))

ti+1 ← combine(ti+1, u) /* assume tn+1 = t1 */
End For

End Repeat
For i = 1 to n [in parallel]



206 K. Chen and V. Ramachandran

For Each clause C ∈ F containing xπ(i) or xπ(i)

u← pour(ti)
For Each literal lj ∈ C where lj 6= xπ(i) and lj 6= xπ(i)

v ← extract(u, yj)
ti ← combine(ti, u)
u← pour(v)

End For
If xπ(i) ∈ C Then

zTi ← combine(zTi , u)
Else /* xπ(i) ∈ C */

zFi ← combine(zFi , u)
End If

End For
append(zTi , bTπ(i))
append(zFi , bFπ(i))
to-double-stranded(ti)
append(ti, {bTπ(i), b

F
π(i)})

End For
t0 ← combine(t1, . . . , tn, zT1 , . . . , zTn , zF1 , . . . , zFn)
to-single-stranded(t0)

End For
Lipton(F, t0) /* verify satisfiability for strands in t0 */

End Algorithm

3.6 Analysis of DNASearch

DNASearch runs a loop n times to construct putative solutions and then runs
Lipton’s algorithm to check the solutions. Lipton’s algorithm runs in time O(km)
[4].

In the loop, we first pour our strands into n different test tubes, which can
be done in linear time. We must then perform 4n extracts (or 2n extracts, if
“false” and “true” are done in parallel) in series to prevent multiple assignments
of the same variable, taking O(n) time.

Next, we check for forced variables. Consider a clause C containing k literals.
For each literal, we need to perform, at some point, k − 1 extracts on the other
literals in its clause, or k(k − 1) extracts in all. Since there are m clauses, the
clause checking process takes, in total, m · k · (k − 1) = O(k2m) time.

Finally, the remaining steps (such as append) all take O(1) time. Therefore
each loop takes O(n) + O(k2m) time, and since the loop is executed n times,
the total running time of DNASearch is O(n2 + k2mn). Assuming m > n, the
running time is simply O(k2mn).

To discuss the space complexity of DNASearch we must first discuss the error
probability of the algorithm because it is randomized. Search and DNASearch will
always return “unsatisfiable” if F indeed cannot be satisfied. However, there is a
chance that the algorithm will report F is unsatisfiable when it can be satisfied.
This occurs when an actual solution for F is not generated as one of the I strands
produced in the algorithm.



Space-Efficient Randomized DNA Algorithm 207

Paturi et al. prove in [8] that the probability this will occur for a given I is
at most

e−I·2−(1− 1
k

)n
.

(For a full explanation of the proof, see [10].)
Therefore, if I = α2(1− 1

k )n = 2(1− 1
k )n+log α, the algorithm has error proba-

bility O(e−α). Note that increasing the error probability decreases I. Since the
number of strands, or the space, required by DNASearch is I, this proves that
the space complexity of the algorithm with error probability O(e−α) is indeed
O(2(1− 1

k )n+log α).

4 Discussion

Our paper opens up many opportunities for further work. More research needs
to be done on harnessing the tools of randomized classical algorithms and the
inherent randomness of molecular computation together in designing new DNA
algorithms. Furthermore, it is an interesting open question whether or not there
are general principles that govern the “blow-up” in time complexity when a
classical randomized algorithm is transformed into a DNA algorithm. Clearly
this depends on the model of computation of the DNA algorithm. For example, in
our model, the sources of randomness are the pour and append operations, but
we could conceivably use other operations, possibly yielding a different running
time.

In a later paper [7], Paturi et al. introduced a preprocessing step for Search
that improves the overall running time to O(20.446n) for 3-SAT. This step, called
Resolve, adds clauses to the formula F to make it more probable that a solution
will be found quickly. (In other words, the Resolve step reduces I.) However,
incorporating Resolve in a DNA algorithm is difficult because it adds 2o(n) clauses
to F . Adding this exponential time preprocessing step to our DNA algorithm
would produce an exponential running time and exponential space algorithm.
It may be possible to implement Resolve in parallel in DNA, although further
research is necessary to determine the feasibility of this technique.

Acknowledgements. We would like to thank Erik Winfree and Richard Lipton
for their valuable comments throughout all stages of this work, and Krista Dobi
for her insights into laboratory techniques.

References

1. D. Boneh, C. Dunworth, R. Lipton, and J. Sgall. On the computational power of
DNA. Discrete Applied Mathematics: Special Issue on Computational Molecular
Biology, 71:79–94, 1996.

2. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394–397, 1962.



208 K. Chen and V. Ramachandran

3. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM, 7:201–215, 1960.

4. R. Lipton. Using DNA to solve NP-complete problems. Science, 268:542–545,
April 1995.

5. B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2n steps. Dis-
crete Applied Mathematics, 10:287–295, 1985.

6. M. Ogihara. Breadth first search 3-SAT algorithms for DNA computers. Tech-
nical Report TR 629, University of Rochester, Department of Computer Science,
Rochester, NY, July 1996.

7. R. Paturi, P. Pudlák, M. Saks, and F. Zane. An improved exponential-time algo-
rithm for k-SAT. In 39th Annual Symposium on Foundations of Computer Science,
pages 628–637, Palo Alto, California, 8–11 Nov. 1998. IEEE.

8. R. Paturi, P. Pudlák, and F. Zane. Satisfiability coding lemma. In 38th Annual
Symposium on Foundations of Computer Science, pages 566–574, Miami Beach,
Florida, 20–22 Oct. 1997. IEEE.

9. H. Yoshida and A. Suyama. Solution to 3-SAT by breadth-first search. In E. Win-
free and D. Gifford, editors, DNA Based Computers V, Cambridge, Massachusetts,
14–15 June 1999. American Mathematical Society.

10. F. Zane. Circuits, CNFs, and Satisfiability. PhD thesis, University of California
at San Diego, Department of Computer Science and Engineering, 1998.



A DNA-Based Random Walk Method for
Solving k-SAT

Sergio Dı́az1?, Juan Luis Esteban1∗, and Mitsunori Ogihara2??

1 Dept. Llenguatges i sistemes informàtics, Universitat Politècnica de Catalunya
c/ Jordi Girona Salgado 1–3, 08023 Barcelona, Spain

{sdiaz,esteban}@lsi.upc.es
2 Department of Computer Science, University of Rochester

Rochester, NY, USA.
ogihara@cs.rochester.edu

Abstract. This paper presents an implementation of a concurrent ver-
sion of Schöning’s algorithm for k-SAT in [Sch99]. It is shown that the
algorithm can be implemented with space complexity O((2 − 2

k
)n) and

time complexity O(kmn + n3), where n is the number of variables and
m the number of clauses. Besides, borrowing ideas from the above men-
tioned implementation, it is presented an implementation of resolution,
a widely studied and used proof system, mainly in the fields of Proof
Complexity and Automated Theorem Proving.

1 Introduction

Developing efficient DNA-based algorithms for solving NP-complete problems
is one of the most important issues of DNA-based computation. The celebrated
paper by Adleman [Adl94], and the subsequent generalization by Lipton [Lip95],
explored the possibility of solving NP-complete problems using DNA. Both Adle-
man and Lipton addressed the issue of coping with exponentially growing amount
of DNA used as the size of instances that can be solved with their algorithms
is quite limited. It is crucial that the growth in the amount of DNA used is
suppressed in order for DNA based computation to compete against silicon-
based computers. Several proposals have been made in the past (see [ORS97,
OR99] for a survey) to resolve the problem of reducing the amount of DNA to
be used. In particular, the following three proposals seem important: (1) Bach
et al. [BCGT96] proposed methods for solving such NP-complete problems as
Clique and Independent Set, where solution candidates to the instance is gener-
ated by combining (in all possible combinations) solutions for its subproblems.
(2) Ogihara [Ogi96] (see also [OR97]) proposed breadth-first search methods for
solving SAT, where partial assignments to the instance given are gradually ex-
tended from the empty assignment towards the full assignments and during the
? Supported by MEC through grant PB98-0937-C04 (FRESCO project)

?? Supported in part by the National Science Foundation Grants CCR-9701911, CCR-
9725021 and INT-9726724.

A. Condon (Ed.): DNA 2000, LNCS 2054, pp. 209–220, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



210 S. Dı́az, J.L. Esteban, and M. Ogihara

extension process those partial assignments that already fail to satisfy at least
one clause are eliminated. (3) Cai et al. [CCC97] (see also [CCC97,LWF]) pro-
posed the surface-based DNA computation, where biochemical operations are
performed on single DNA strands immobilized on a gold surface.

The purpose of this paper is to explore one more direction in the study of
“space-efficient” DNA algorithms for solving NP-complete problems. We study
DNA-based parallel execution of a probabilistic algorithm for SAT. More pre-
cisely, we study possible implementation of Schöning’s algorithm for the k-SAT
problem [Sch99]. k-SAT is the problem of testing satisfiability of CNF formulas
each of whose clauses consists of exactly k literals. Schöning’s algorithm is essen-
tially sequential repetition of a 2n step random walk procedure. In the random
walk procedure one starts with a random assignment and executes at most 2n
times the following:

pick uniformly at random a clause that is unsatisfied currently, pick a
literal from the selected clause uniformly at random, and flip the assign-
ment to the literal to satisfy the clause.

In Schöning’s algorithm, this random walk procedure is repeated Fk(n) =
(2 − 2

k )n times to achieve a constant success probability of finding a satisfy-
ing assignment for a satisfiable formula of n variables.

The reader will perhaps immediately notice an interesting question arising
from this Schöning’s result. Can we parallelize the sequential Fk(n) repetition of
the random walk procedure on DNA? Namely, is it possible to design a DNA-
based algorithm where one starts with Fk(n) randomly selected initial assign-
ments and performs the 2n step random walk procedure concurrently on the
pool of DNA. If that is possible, then we could reduce the space requirement
for solving k-SAT from 2n to Fk(n) = (2 − 2

k )n, and that would increase the
size of the largest formulas that could be handled by DNA based computation
by a multiplicative factor of k

k−1 . In particular, in the case when k = 3, the size
would be 3

2 of what it is with Lipton’s method.
We present in this paper one possible implementation of the algorithm. The

paper is organized as follows. In Section 2 we describe the aforementioned DNA-
based implementation. In Section 3 we present one small application of the
algorithm we develop — resolution. In Section 4 we discuss open issues.

2 DNA-Implementation of Schöning’s Algorithm

2.1 The Computation Model

We use the test-tube model in which DNA strands are dissolved in water. Fol-
lowing Adleman [Adl94] and Lipton [Lip95], we permit the following operations
on DNA:

1. merge — mixing the contents of two test tubes into one,
2. synthesize — chemically synthesizing specific patterns of DNA,
3. anneal — making DNA strands form double strands without elongation,



DNA-Based Random Walk 211

4. append — appending a given pattern to each single DNA strand (accom-
plished by annealing with DNA ligase),

5. denature — pulling away double-stranded DNA into single-stranded DNA,
6. detect — testing whether a given test tube contains a DNA strand,
7. length — separating DNA strands according to their base length,
8. degenerate — destroying single-stranded DNA into single DNA molecules

(accomplished by the use of exonuclease),
9. cut — using restriction enzymes to cut DNA strands at specific restriction

sites,
10. separate — separating DNA strands based on their pattern.

These are all well-studied biochemical operations (see [SFM89] or for a quick
overview of them see [ORS97]). We note that recent technical advances have
made the length technique robust and rapid [ROMJ97].

2.2 Schöning’s Algorithm

Figure 1 describes Schöning’s algorithm [Sch99].

Given a k-CNF formula ϕ of n variables, repeat the following Fk(n) = (2(1 − 1
k
))n

times.

Step 1: Guess an initial assignment a ∈ {0, 1}n uniformly at random.
Step 2: Repeat 2n times:

(a) If ϕ(a) = 1 (the current assignment satisfies the formula), then accept and
halt.

(b) Otherwise, from the set of all clauses that are not satisfied by the current
assignment, pick one, C, uniformly at random.

(c) Out of the k literals in C pick one, y, uniformly at random.
(d) Flip the assignment to the variable in y.

Fig. 1. The Sequential Random Walk Procedure in Schöning’s algorithm

Schöning shows that if the formula is satisfiable, with high probability one
finds a satisfying assignment for ϕ and if the formula is unsatisfiable one never
finds that ϕ is satisfiable.

2.3 Concurrent Version of Schöning’s Algorithm

The body of the main loop of Schöning’s algorithm is sequential repetition of the
2n step random walk procedure. Using massive parallelism of DNA computation
one may perform individual Fk(n) runs of the main body concurrently, namely,
by executing the 2n step random walks for Fk(n) independent assignments. If
the assignments that are manipulated are encoded as a unique DNA strand,



212 S. Dı́az, J.L. Esteban, and M. Ogihara

such modification will yield a DNA-based algorithm requiring O(Fk(n)), if there
is no worry of losing strands. So consider the following concurrent version of
Schöning’s algorithm (see Figure 2).

Step 1: Pick Fk(n) random assignments as the initial search space.
Step 2: Repeat the following 2n times.

(a) Test whether there is a satisfying assignment in the current pool. If so, assert
that the input formula is satisfiable and halt.

(b) Concurrently for each assignment a, select uniformly at random a clause C
yet to be satisfied, select uniformly at random a literal y ∈ C, and flip the bit
of y in a.

Fig. 2. Concurrent Version of Schöning’s Algorithm

2.4 Encoding Scheme

In order to implement the concurrent version of the algorithm, we employ a
specific DNA encoding scheme. Let ϕ = C1 ∧ · · · ∧ Cm be a k-SAT formula over
some n variables, whose satisfiability we are testing. Let Λ denote the set of all
literals, i.e., Λ = {x1, . . . , xn} ∪ {x1, . . . , xn}. An alternative way of expressing
a literal is to use an equation xi ≡ b, 1 ≤ i ≤ n, b ∈ {0, 1}, where xi ≡ 0 is
for the negative literal xi and xi ≡ 1 is for the positive literal xi. We assign
indices 1 to 2n to these literals, by letting the equation xi ≡ b correspond to
the index 2i + b − 1. For each i, 1 ≤ i ≤ 2n, λi denotes the literal with index i.
Each single-stranded DNA appearing during computation is the concatenation
of short stretches of single strands selected from the set E consisting of:

1. The Headers [H, +], [H,−];
2. The Bit Setters [B, i,+] and [B, i,−], where 1 ≤ i ≤ 2n;
3. The Failed Literal Specifiers [F, i, j], where 1 ≤ i ≤ n and 1 ≤ j ≤ 2n;
4. The Bit Flip Locators [C, i], where 1 ≤ i ≤ n.

We assume that the above strings are of equal length and the unique length
of them is an even number, say L. The + and − signs used to indicated the
parity of the round number in the random walks to be executed. The header
strands, [H, +] and [H,−], are used as the header, in the sense that all legitimate
encodings of assignments begin with one of the two headers. The bit setters are
used to encode assignments to individual variables; namely, for each i, 1 ≤ i ≤ n,
[B, i,+] and [B, i,−] both encode that the literal for the di/2eth variable is λi.
For each legitimate truth assignment and for each variable i, 1 ≤ i ≤ n, at most
one of {xi, xi} can be on the list. The failed literal specifiers are used when we
list for each assignment all the literals that it fails to satisfy. The strand [F, i, j]
being appended to an assignment indicates that λj is the ith smallest element in
the set of all the literals that appear in at least one clause that the assignment



DNA-Based Random Walk 213

fails to satisfy. The bit flip locators are used to specify the literal for which a
bit flip will be performed. One of these locators will be appended to each non-
satisfying assignment immediately after the list of dissatisfied literals has been
appended. The pattern [C, i] being appended to an assignment indicates that
the change will occur for the ith literal in the list appended.

To perform the operation cut we select a restriction enzyme R that recognizes
single-stranded pattern στ and cuts between σ and τ . We embed these patterns
σ and τ into some of the strands.

– [H, +] and [H,−] start with τ ,
– for each i, 1 ≤ i ≤ 2n, and S ∈ {+,−}, [B, i, S] ends with σ but does not

start with τ ,
– for each i, 1 ≤ i ≤ n, and each j, 1 ≤ j ≤ 2n, [F, i, j] starts with τ and ends

with σ,
– for each i, 1 ≤ i ≤ n, [C, i] starts with τ and ends with σ, and
– neither σ nor τ appear in any other place.

For two basic components u and v in E, by the linker of u·v, we mean the strand
that is complementary antiparallel to the strand constructed by appending the
5′-end half of v to the 3′-end half of u. For simplicity we write lnk(u, v) to denote
the linker of u · v.

These basic components are connected into a truth assignment in an obvious
way: it is the header followed by assignments to x1, x2, . . . , xn. We require these
substrings should have a common parity value.

2.5 Implementing Step 1: Generation of the Initial Search Space

Random generation of Fk(n) initial assignments is done by pouring in a test
tube Fk(n) copies of each of the following parts and let the strands anneal with
DNA ligase:

1. Header [H, +];
2. Bit Setters for each i, 1 ≤ i ≤ 2n, [B, i,+],
3. Linkers

a) lnk([H, +], [B, 1, +]), lnk([H, +], [B, 2, +]); and
b) for each i, 1 ≤ i ≤ n − 1, lnk([B, 2i − 1, +], [B, 2i + 1, +]), lnk([B, 2i −

1, +], [B, 2i + 2, +]),
lnk([B, 2i,+], [B, 2i + 1, +]), and lnk([B, 2i,+], [B, 2i + 2, +]).

Note that the linkers have effect of appending an assignment to x0 to the header
and of appending for each i, 1 ≤ i ≤ n − 1, an assignment to xi+1 to an
assignment to xi. Since the header and bit selectors are of base length L all
the legitimate strands generated will be of base length at most (n + 1)L and
only the legitimate strands of base length (n + 1)L will encode assignments.
Since the number of duplicates is Fk(n) for each substring, if all the header
strands are used, then Fk(n) many strands of base length (n + 1)L will be
generated. We have only to extract strands of base length (n + 1)L. There are



214 S. Dı́az, J.L. Esteban, and M. Ogihara

various kinds of uncertainty involved in this process. First, formation of double
strands arrives at an equilibrium. Second, strands may be lost during merge and
length operations. Third, the yield of the synthesis operation is not perfectly
controllable. Since the algorithm we are implementing is probabilistic, we can
accommodate the uncertainty by simply increasing the amount of the strands to
be put in by a certain amount.

2.6 Implementing Step 2a: Testing the Existence of Satisfying
Assignment in the Pool

Although it is possible to implement this test as an independent step, in order
to reduce the total number of biochemical operations in the implementation we
will incorporate this step into the implementation of Step 2b described below.

2.7 Implementing Step 2b: Executing Concurrent Random Walk

As we noted before we use two time stamps, + and −. Whenever we are about to
execute Step 2 (combined Steps 2a and 2b) all the assignments in the test tube
have a unique time stamp. From these assignments we will generate new ones
by bit flipping, and the new ones will have the opposite time stamp. Let S be
the time stamp that is unique to the current assignments and S′ be the opposite
time stamp. Let T denote the test tube containing all the current assignments.

The implementation of the random walk step is divided into the following
three phases:

Phase 1 For each i, 1 ≤ i ≤ 2n, select into the test tube Qi assignments whose
are to be modified to satisfy λi.

Phase 2 For each i, 1 ≤ i ≤ 2n, from each assignment in Qi create its copy with
the new time stamp and with the intended modification to the assignment
to λi.

Phase 3 Merge all the new assignments into one test tube. Turn that test tube
into T .

The last phase will be executed by a sequence of merge operation, where 2n − 1
test tubes will be mixed into another test tube.

Phase 1: Distributing assignments to test tubes. First we explain the
idea. Let α be a non-satisfying assignment in the current pool. Suppose α fails
to satisfy precisely h clauses, Ct1 , . . . , Cth

, t1 < · · · < th, and let λi1 , . . . , λid
be

the enumeration of all the literals appearing in at least one of these clauses. We
append [F, 1, i1], . . . , [F, d, id] to α in this order then append randomly one of
[C, i], 1 ≤ i ≤ d to it. Suppose [C, r] be the one that is selected. Then combing
[C, r] and [F, r, ir] will specify that λir

is the bit selection to be flipped. For that
matter, for each i, 0 ≤ i ≤ n, and j, 0 ≤ j ≤ i, define Ti,j to be the collection of
all assignments α such that:



DNA-Based Random Walk 215

– the number of literals in {λ1, . . . , λ2i} that appear in at least one clause
that α fails to satisfy is precisely j.

Naturally T0,0 is the current pool of assignments.
By dynamic programming we can compute all Ti,j , 0 ≤ i ≤ n, 0 ≤ j ≤ i

based upon the following recurrence:

Dynamic Programming Recurrence for i = 1 . . . n, for j = 0 . . . i, put all
the assignments in Ti−1,j that fail to satisfy at least one clause in which
either λ2i−1 or λ2i appears into Ti,j+1 and put the rest into Ti,j .

Obviously the current pool contains a satisfying assignment if and only if Tn,0
is empty.

Now the actual implementation is described in Figure 3.

1. For i = 1 . . . n, do the following:
a) Concurrently for j = 0, . . . , i, prepare Ti,j as an empty test tube.
b) Concurrently for j = 1, . . . , i, extract from Ti−1,j−1 into Vj all the assignments

that fail to satisfy at least one clause in which λ2i−1 appears, and extract from
the rest of Ti−1,j−1 into V ′

j all the assignments that fail to satisfy at least one
clause in which λ2i appears; then merge the remainder into Ti,j−1.

c) Concurrently for i = 1, . . . , j, append [F, j, 2i − 1] to all the strands in Vj and
[F, j, 2i] to all the strands in V ′

j , then merge these into Ti,j .
2. Test whether Tn,0 contains an assignment. If so, assert that the formula is satisfi-

able.
3. Concurrently for j = 1, . . . , n, anneal with DNA ligase after merging Fk(n) copies

of each of the following in Tn,j :
– [C, l], 1 ≤ l ≤ j, and the linkers lnk([F, j, t], [C, l]), 1 ≤ t ≤ 2n, 1 ≤ l ≤ j.

4. Merge Tn,1, . . . , Tn,n into a test tube U . By separate, divide U into test tubes U ′
ij ,

1 ≤ i ≤ n, 1 ≤ j ≤ 2n, where U ′
ij consists of all strands in U with both [C, i] and

[F, i, j] on them.
5. For each j, 1 ≤ j ≤ 2n, construct a test tube Qj by merging all the test tubes

U ′
1j , . . . , U

′
nj .

6. For u ∈ Λ, remove the appended strands used for classification by using the enzyme
R and then by extracting with the length operation all the strands of base length
(n + 1)L.

Fig. 3. Classification Algorithm

Note that Line 1b can be implemented by repeating k times separate steps
as was used in Lipton’s method for CNF-SAT [Lip95]).

Phase 2: Flipping a bit. Now we will flip bits in tubes Qr for 1 ≤ r ≤ 2n.
Let W be the test tube containing all the assignments for which we chose to flip
a bit so that λr is satisfied. Let t and b such that λr is representing xt ≡ b. That
means that before the flipping the assignments satisfy xt ≡ 1 − b, so if r is odd



216 S. Dı́az, J.L. Esteban, and M. Ogihara

then λr−1 is satisfied and if r is even then λr+1 is satisfied. The current time
stamp, say S must be changed by the opposite, say S′. Figure 4 describes the
algorithm.

1. Append [H, S′] to all the strands in W .
2. For i = 1, . . . , n, do the following

– If i 6= t, then do the following:
a) For each b ∈ {0, 1}, extract from W into Wb all the strands with [B, 2i −

1 + b, S], and append [B, 2i − 1 + b, S′] to all the strands in Wb,
b) Merge W0 and W1 into W .

– Otherwise, append [B, r, S′] to all the strands in W .
3. Cut the strands using the enzyme R. Extract the strands with [H, S′].

Fig. 4. Bit Flipping Algorithm

Note that after the loop there are no well formed assignments. All the strands
have double the size of a well formed assignment. The cut operation separates
the old assignment from the new assignment. The strands with [H, S′] correspond
to the new assignments. It is important to remark that the length of the strands
is always O(n).
Comment

– Add to the test tube many copies of the complement of each strand in E of
time stamp S′ and let the strands anneal (without DNA ligase).

– Degenerate to remove single stranded parts of partially double strands.
– Denature and then by the length operation, extract all the strands of base

length (n + 1)L.

2.8 Running Time Analysis

Let us analyze the running time of the algorithm. The initial generation can
be done in O(1) steps. For each distribution phase, the number of concurrent
separate steps required for producing the test tubes Tij , is proportional to the
total number of literals, so it is O(km). Reclassification of the assignments based
on the labels generated is proportional to O(n2). As there are 2n random walk
steps the total running time is O(kmn + n3).

Theorem 1. The concurrent version of Schöning’s algorithm can be imple-
mented with O(kmn + n3) steps.

We need to worry about losing assignments during the execution of the en-
tire random walk steps. Suppose the reduction rate is θ, 0 < θ < 1, for one step
of random walk; i.e., after execution of a single step of concurrent random walk
phase, the amount of assignments in the test tube will be decreased by a fraction
of θ. (We can assume that θ is small.) In order to maintain at least Fk(n) assign-
ments at the end, we need to start with F ′

k(n) = Fk(n) · (1 − θ)−2n assignments
at the beginning. This changes the space complexity of the problem to F ′

k(n).



DNA-Based Random Walk 217

Theorem 2. The concurrent version of Schöning’s algorithm can be made to
run in time O(kmn + n3) steps and in space O(F ′

k(n)).

3 DNA-Implementation of Resolution

3.1 Resolution

Resolution is one of the most widely used proof systems in computer applications,
in particular, Automated Theorem Proving, and is based upon the resolution
algorithm of Robinson [Rob65]. Resolution is a refutation system for negations
of tautologies, expressed in CNF. This system has only one rule of inference:

C ∨ {x} D ∨ {¬x}
C ∨ D

,

where C ∨ D is called the resolvent . In a resolution proof we simply apply the
resolution rule starting from the initial clauses until the empty clause is obtained.

In order to speed up the time of finding refutations, some restrictions of the
resolution rule have been proposed. Those restrictions are of course solid, and
most of them complete. Most of these restriction have been proved to be less
efficient than (unrestricted) resolution.

3.2 Implementation of Concurrent Resolution on a Variable

We will show that it is possible to implement with DNA concurrent resolution on
one specific variable; i.e. given a pool of clauses, it is possible to do the following:

1. Search (based on the indices given to the variables) for a variable x for which
there exist at least one clause containing x and at least one containing x. If
there is no such variable the formula is satisfiable.

2. Concurrently and randomly combine one clause with x and another with x
to perform resolution.

3. If the empty clause is generated then the formula is unsatisfiable. Otherwise
return to the first step.

Note that each time we execute the above successfully, the number of variables
appearing either positively or negatively in any of the clauses will decrease by at
least one. So repeating the above procedure n times, for a formula of n variables,
will be sufficient.

In order to implement the above procedure, we use the parity time stamp as
we did in the previous section. The coding of each literal will be redundant in the
sense that we expand the selection for each variable from two to three, namely,
positive, negative, and not-existent. For a time stamp S ∈ {+,−}, we will use
[xi, S], [xi, S], [⊥i, S] to denote the three choices, respectively. For example for
a clause (x1 ∨ x3) for a formula over {x1, . . . , x4}, the encoding will look like
[x1, S][⊥2, S][x1, S][⊥4, S]. As in the previous algorithm, each assignment has a
header [H, S].



218 S. Dı́az, J.L. Esteban, and M. Ogihara

3.3 Selecting Any Variable

In order to test whether xi can be used for resolution. Extract into T1 all the
strands with [x, S] and into T2 all the strands with [x, S]. If both T1 and T0 are
nonempty, we will use xi. If exactly one of them is nonempty, we will throw away
the empty one, since the clauses in it are all satisfiable.

3.4 Performing a Resolution Steps in Parallel

Once we have a suitable variable, say xi, we merge T0 and T1 to make T ′. We
first connect the strands in T0 after those in T1. For that matter, we append a
special strand [J, 1] after all the strands in T0 and attach a special strand [J, 2]
before all the strands in T1. By linking [J, 1] and [J, 2], we join the strands in T0
and T1 in an arbitrary combination. Then we perform concurrent resolution step
by sequence-based separation by following a similar method that we discussed in
the previous section. After appending a new header [H, S′], for each j, 1 ≤ j ≤ n,
in this order, we do the following:

– If j 6= i, then
– if the strand has both [xj , S] and [xj , S], then throw the strand away;
– if the strand has both [xj , S] and [⊥j , S], then append [xj , S

′];
– if the strand has both [xj , S] and [⊥j , S], then append [xj , S

′];
– if the strand has only [⊥j , S], then append [⊥j , S

′]
– if j = i, then append [⊥i, S

′].

Then we anneal the complements of the new part, degenerate, and then take
only length (n + 1)L strands.

To check whether we have found the empty clause, we just check if there is
any strand formed solely by the empty literals.

3.5 General Resolution

Now it is easy to understand how to perform unrestricted resolution. We connect
the strands of tube T and get rid of those of incorrect length. In test tube Tx

we will place all the strands with x and x̄. Each variable will have its own test
tube. Each test tube must be checked to throw away any clause that contains
both any literal y and ȳ other than the attached to the tube. In the previous
subsection we have explained how to perform the resolution step. Once done we
throw the contents of all the tubes into T and check whether the empty clause
is generated.

4 Conclusion

In this paper we presented an implementation of Schöning’s method on DNA. We
did not show, however, the optimality of the implementation, not even feasibility
with the current technology.

In Theorem 2 we argue that Schöning’s algorithm can be implemented in
time O(kmn + n3) and in space F ′

k(n). In a more rigorous analysis the rate at



DNA-Based Random Walk 219

which the strand decreases in one random walk step would be in the form of
(1−ξ)Ω(n2+km) as Ω(n2 +km) operations are involved in one random walk step.
The crucial issue here is to identify the best rate possible for the value Θ or
for this value ξ. The rigorous estimate of the values will reveal the degree of
feasibility of this implementation. Also one should explore more time efficient
methods for implementing the algorithm.

Note that, in order for the restricted version or for the general version to be
successful, one needs to start with a large number of copies of the literals. It is
not clear to us how many copies are sufficient.

References

[Adl94] L. Adleman. Molecular computation of solutions to combinatorial problems.
Science, 266:1021–1024, 1994.

[BCGT96] E. Bach, A. Condon, E. Glaser, and C. Tanguay. DNA models and al-
gorithms for NP-complete problems. In Proceedings of 11th Conference on
Computational Complexity, pages 290–299. IEEE Computer Society Press,
Los Alamitos, CA, 1996.

[CCC97] W. Cai, A. Condon, R. Corn, E. Glaser, Z. Fei, T. Frutos, Z. Guo, M. Lagally,
Q. Liu, L. Smith, and A. Thiel. The power of surface-based DNA compu-
tation. In Proceedings of 1st International Conference on Computational
Molecular Biology, pages 67–74. ACM Press, 1997.

[Lip95] R. Lipton. DNA solutions of hard computational problems. Science, 268:542–
545, 1995.

[LWF] Q. Liu, L. Wang, A. G. Frutos, R. M. Corn, and L. M¿ Smith. DNA com-
puting on surfaces. Nature, 403:175–178, 2000. January, 13.

[Ogi96] M. Ogihara. Breadth first search 3SAT algorithms for DNA computers.
Technical Report TR 629, Department of Computer Science, University of
Rochester, Rochester, NY, July 1996.

[OR97] M. Ogihara and A. Ray. DNA-based parallel computation by counting. In
H. Rubin and D. H. Wood, editors, DNA Based Computers III, pages 255–
264, 1997.

[OR99] M. Ogihara and A. Ray. Biomolecular computing—recent theoretical and
experimental advances. SIGACT News, 30(2):22–30, 1999.

[ORS97] M. Ogihara, A. Ray, and K. Smith. Biomolecular computing—a shape of
computation to come. SIGACT News, 28(3):2–11, 1997.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the Association for Computing Machinery, 12(1):23–41, January
1965.

[ROMJ97] B. B. Rosenbaum, F. Oaks, S. Menchen, and B. Johnson. Improved single-
stranded DNA sizing accuracy in capillary electrophoresis. Nucleic Acids
Research, 25:3925–3929, 1997.

[Sch99] U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction
problems. In Proceedings of 40th Symposium on Foundations of Computer
Science, pages 410–414. IEEE Computer Society Press, Los Alamitos, CA,
1999.

[SFM89] J. Sambrook, E. F. Fritsch, and T. Maniatis. Molecular Cloning: a Laboratory
Manual. Cold Spring Harbor Press, NY, 2nd edition, 1989.



Solving Computational Learning Problems of
Boolean Formulae on DNA Computers

Yasubumi Sakakibara

Department of Information Sciences, Tokyo Denki University,
Hiki-gun, Saitama 350-0394, Japan

(E-mail: yasu@j.dendai.ac.jp)

Abstract. We apply a DNA-based massively parallel exhaustive search
to solving the computational learning problems of DNF (disjunctive nor-
mal form) Boolean formulae. Learning DNF formulae from examples is
one of the most important open problems in computational learning the-
ory and the problem of learning 3-term DNF formulae is known as in-
tractable if RP 6= NP . We propose new methods to encode any k-term
DNF formula to a DNA strand, evaluate the encoded DNF formula for
a truth-value assignment by using hybridization and PCR, and find a
consistent DNF formula with the given examples. By employing these
methods, we show that the class of k-term DNF formulae (for any con-
stant k) and the class of general DNF formulae are efficiently learnable
on DNA computer.

1 Introduction

The massively parallel search is a very useful method found in DNA comput-
ing and has much potential to solve many computational hard (NP-complete)
problems. Adleman has employed the massively parallel search for solving the
Hamiltonian path problem [1] and Lipton has further developed it to the satis-
fiability problem [7]. Two fundamental techniques are used in their algorithms:

1. design an assembly graph for generating an exponential number of all pos-
sible candidates for the solutions,

2. extract a correct solution through biological operations in efficient time.

In this paper, we apply a DNA-based massively parallel exhaustive search to
solving the computational learning problems of DNF (disjunctive normal form)
Boolean formulae. Computational learning theory is a new and active research
area in computer science and artificial intelligence to examine formal models of
inductive inference, discover the common methods underlying efficient learning
algorithms and identify the computational hardness to learning. Learning DNF
Boolean formulae from examples is a central topic in computational learning
theory.

The problem of learning Boolean formulae in computational learning theory
is that we first assume the target Boolean formula α∗ on Xn = {x1, x2, . . . , xn}

A. Condon (Ed.): DNA 2000, LNCS 2054, pp. 220–230, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Solving Computational Learning Problems 221

which is unknown to the learning algorithm, and second a truth-value assign-
ment a ∈ {0, 1}n and the truth-value of the target Boolean formula α∗ for the
assignment a, that is, α∗(a), are give to the learning algorithm. We call the pair
(a, α∗(a)) an example and usually an enough number of examples are given to
the learning algorithm. Then the problem is to correctly and efficiently identify
the target Boolean formula α∗ only from those given examples. The problems for
learning DNF formulae from examples are computationally hard problems. The
problem of learning 3-term DNF formulae is known as intractable if RP 6= NP
[9,6], and the problem of learning the class of general DNF formulae remains as
one of the most important open problems in computational learning theory.

In order to solve these computationally hard problems of learning DNF
Boolean formulae on DNA computers, we propose new methods to encode any
k-term DNF formula to a DNA strand, evaluate the encoded DNF formula for
truth-value assignments by using hybridization and PCR, and find the consistent
DNF formulae with the given examples. Unlike Lipton’s solution of the satisfia-
bility problem for Boolean formulae, we encode DNF Boolean formulae to DNA
strands, put those DNA strands into the test tube and the procedure consisting
of biological operations is executed on the test tube to evaluate DNA strands
for truth-value assignments. The key idea is our encoding method to encode any
terms (conjunctions of literals on Xn) to DNA single-strands containing stopper
and marker sequences and concatenate those DNA strands to represent DNF
Boolean formulae so that the evaluation of the DNA strands for a truth-value
assignment can be efficiently done using the biological operations of hybridiza-
tion and PCR. By employing these methods, we show that the class of k-term
DNF formulae (for any constant k) and the class of general DNF formulae are
efficiently learnable on DNA computer.

We also shortly discuss parallel computational aspects and error-resistant
computations of our learning algorithms.

2 Computational Learning of Boolean Formulae

Human beings have an ability to learn new concepts without explicit program-
ming. In the machine learning literature, this ability is called inductive infer-
ence or learning from examples. Computational learning theory is a new and
active research area in computer science and artificial intelligence to examine
formal models of inductive inference, discover the common methods underlying
efficient learning algorithms and identify the computational hardness to learn-
ing. The work on computational learning research is done by formally modeling
the activity of learning and characterizing what can or cannot be learned with
respect to some precisely defined notion of learnability. The study of computa-
tional learning also has practical motivations such as acquiring human experts’
knowledges and synthesizing boolean circuits from input-output pairs.

In this paper, we employ the Valiant’s learnability model [11] and consider
the Boolean formulae as the target concepts to be learned.



222 Y. Sakakibara

We assume that there are n Boolean variables (or attributes) and we denote
the set of such variables as Xn = {x1, x2, . . . , xn}. A truth-value assignment
a = (b1, b2, . . . , bn) is a mapping from Xn to the set {0, 1} or a binary string of
length n where bi ∈ {0, 1} for 1 ≤ i ≤ n. A Boolean function is defined to be a
mapping from {0, 1}n to {0, 1}. Boolean formulae are useful representations for
Boolean functions. The simplest Boolean formula is just a single variable. Each
variable xi (1 ≤ i ≤ n) is associated with two literals: xi itself and its negation
¬xi. A term is a conjunction of literals. A Boolean formula is in disjunctive
normal form (DNF, for short) if it is a disjunction of terms. Every Boolean
function can be represented by a DNF Boolean formula. For any constant k,
a k-term DNF formula is a DNF Boolean formula with at most k terms. We
denote the truth value of a Boolean formula β for an assignment a ∈ {0, 1}n by
β(a).

The Valiant’s learnability model is the distribution-independent model for
learning from random examples and called probably approximately correct learn-
ing model (PAC model, for short). First, we assume a target Boolean formula
α∗ on Xn to be learned. An example of α∗ is a pair (a, l) where a is an assign-
ment in {0, 1}n and l is the truth-value of the target Boolean formula α∗ for the
assignment a, that is, l = α∗(a). An example (a, l) is called a positive example
of α∗ if l = 1 and called a negative example if l = 0. A sample is a finite set of
positive and negative examples of α∗. The size of a sample S is the number of
examples in it. A Boolean formula β is said to agree with an example (a, l) if
β(a) = l. A Boolean formula is consistent with the given sample if it agrees with
all examples in the sample.

We assume that there is an unknown and arbitrary probability distribution D
on the domain {0, 1}n. The probability of assignment a ∈ {0, 1}n with respect to
D is denoted PrD(a). Random samples are assumed to be drawn independently
from the domain {0, 1}n according to this probability distribution D on {0, 1}n.
A learning algorithm takes a randomly drawn sample as input and conjectures
some Boolean formula β on Xn. The success of learning is measured by two
parameters, the accuracy parameter ε and the confidence parameter δ. We define
a notion of the difference between two Boolean formulae α and β with respect
to the probability distribution D as

d(α, β) =
∑

α(a) 6=β(a)

PrD(a).

The error of a Boolean formula β with respect to the target Boolean formula α∗
is d(β, α∗). A successful learning algorithm is one that with high probability finds
a Boolean formula whose error is small. The notion of polynomial learnability in
PAC model is formally defined as follows:

A class Cn of Boolean formulae over Xn is polynomially PAC learnable
if there exists a learning algorithm A for Cn such that for any ε and δ,
for any target Boolean formula α∗ ∈ Cn, and for any distribution D on
{0, 1}n, when A is given as input a randomly drawn sample S of size



Solving Computational Learning Problems 223

polynomial in n, ε and δ, the algorithm A outputs a Boolean formula
β ∈ Cn such that d(β, α∗) ≤ ε with probability at least 1 − δ, and runs
in time polynomial in the size of S.

When learning the class of general DNF formulae, the sample size and the time
of learning algorithm is allowed to be polynomial in n, ε, δ, and further the size
of the target DNF formula α∗ where the size of DNF formula β is the number
of terms in β.

The following result has been shown for the polynomial learnability of
Boolean formulae [2]:

For a class Cn of Boolean formulae, if there exists a polynomial-time
learning algorithm that produces a Boolean formula consistent with the
given sample S, then the class Cn is polynomially PAC learnable.

For the class of k-term DNF formulae, a randomly drawn sample S of size greater
than

m ≥ kn

ε
ln

(
3
δ

)

is shown to be enough for the consistent learning algorithm, and for the class of
general DNF formulae, a randomly drawn sample S of size greater than

m ≥ size(α∗)n
ε

ln
(

3
δ

)

is shown to be enough for the consistent learning algorithm that produces a DNF
formula of smallest size consistent with S, where size(α∗) is the size of the target
DNF formula α∗. Nevertheless, the problems for learning DNF formulae from
given examples are computationally hard problems. The problems of learning the
class of 3-term DNF formulae and learning the class of k-term DNF formulae
for any constant k ≥ 2 have been shown to be intractable if RP 6= NP [9], and
the problem of learning the class of general DNF formulae remains as one of the
most important open problems in computational learning theory.

3 Learning Algorithms on DNA Computers

In this section, we provide the methods to encode k-term DNF formulae to DNA
strands, evaluate the encoded DNF formula for a truth-value assignment, and
find a consistent DNF formula with the given sample.

3.1 Algorithm to Evaluate k-Term DNF Formulae

To evaluate a k-term DNF formula β on n Boolean variables Xn =
{x1, x2, . . . , xn}, we use the following simple algorithm:



224 Y. Sakakibara

Algorithm A:

Let a = (b1, b2, . . . , bn) be a truth-value assignment on Xn,
and β = t1 ∨ t2 ∨ · · · tm be a given DNF formula, where tj (1 ≤ j ≤ m)
is a term on Xn.

Step 1. For each i (1 ≤ i ≤ n),

Step 1.1. If bi = 0 then let z = xi, and if bi = 1 then let z = ¬xi.

Step 1.2. If any term tj (1 ≤ j ≤ m) contains z, then delete the
term tj from β.

Step 2. If there remains at least one term in β, then the truth-value of
β for the assignment a is 1. Otherwise, the truth-value is 0.

The algorithm A eliminates all terms whose truth-values become 0 for the
assignment a, and if any terms t remain in β, the truth-values of the terms
t become 1 for a and hence the truth-value of β becomes 1 for a. Thus, it
is easily verified that this algorithm correctly calculates the truth-value of the
DNF formula β for the assignment a.

3.2 Implementing the Evaluation Algorithm on DNA Computer

We implement the algorithm A using DNA strands and biological operations.
First, we encode a k-term DNF formula β into a DNA single-strand as follows:

Let β = t1 ∨ t2 ∨ · · · tk be a k-term DNF formula.

(1) For each term t in the DNF formula β, we use the DNA single strand
of the form:

5′ − stopper − marker − lit1 − · · · − litn − 3′

where liti (1 ≤ i ≤ n) is the encoded sequence for xi if the term t
contains xi, the sequence for ¬xi if t contains ¬xi, or the sequence for
empty if t contains neither. The stopper is a stopper sequence for the
polymerization stop that is a technique developed by Hagiya et al. [4].
The marker is a special sequence for an extraction used later at the
evaluation step.

(2) We concatenate all of these sequences encoding terms tj (1 ≤ j ≤ k)
in β. Let denote the concatenated sequence encoding β by e(β).

For example, the 2-term DNF formula (x1 ∧ x2) ∨ (¬x3) on three variables
X3 = {x1, x2, x3} is encoded as follows and illustrated in Figure 1:

5′−marker−x1−x2−empty−stopper−marker−empty−empty−¬x3−3′

Second, we put the DNA strand e(β) encoding the DNF formula β into the
test tube and do the following biological operations to evaluate β for the truth-
value assignment a = (b1, b2, . . . , bn).



Solving Computational Learning Problems 225

marker x1 x2 empty stopper marker empty empty ¬x3

Fig. 1. The DNA strand encoding the DNF formula (x1 ∧ x2) ∨ (¬x3).

Algorithm B(T, a):

(1) Let the test tube T contain the DNA single-strand e(β) for the DNF
formula β.

(2) Let a = (b1, b2, . . . , bn) be the truth-value assignment. For each bi

(1 ≤ i ≤ n), if bi = 0 then put the Watson-Crick complement xi of the
sequence encoding xi into the test tube T , and if bi = 1 then put the
complement ¬xi of ¬xi into T .

(3) Cool down the test tube T for annealing these complements to com-
plementary substrands in e(β).

(4) Apply the Polymerase Chain Reaction (PCR) to the test tube T
with these annealed complements as the primers. As a result, if the sub-
strand for a term ti in β contains a literal liti and the bit bi assigns 0 to
liti (that is, if bi is 0 then the truth-value of liti equal to xi becomes 0,
and if bi is 1 then the truth-value of liti equal to ¬xi becomes 0), then
the complement liti of the substrand liti has been put at Step (2) and
is annealed to liti. PCR extends the primer liti and the subsequence
for the marker in the term ti becomes double-stranded, and the exten-
sion stops at the stopper sequence. Otherwise, the subsequence for the
marker remains single-stranded. This means that the truth-value of the
term ti is 1 for the assignment a.

(5) Extract the DNA (partially double-stranded) sequences that con-
tains single-stranded subsequences for markers. These DNA sequences
represent the DNF formulae β whose truth-value is 1 for the assignment
a.

The figure 2 illustrates the behavior of the algorithm B for β = (x1 ∧ x2) ∨
(¬x3) and a truth-value assignment a = (101) on X3 = {x1, x2, x3}, and the
figure 3 illustrates for β and a truth-value assignment a = (111). The truth-
value of β is 0 for the assignment a = (101) and 1 for the assignment a = (111).

3.3 The Consistent Learning Algorithm on DNA Computer

Now we present the efficient DNA-based algorithm for learning the class of k-
term DNF formulae for any constant k. We employ an exhaustive search for
finding the consistent hypotheses of DNF formulae with the given sample.

The DNA-based consistent learning algorithm for k-term DNF formulae con-
sists of two steps:



226 Y. Sakakibara

marker x1 x2 empty stopper marker empty empty ¬x3

¬x1 ¬x3x2 (for the assignment (1 0 1))

+

⇓

Annealing:

marker x1 x2 empty stopper marker empty empty ¬x3

x2 ¬x3

⇓

PCR (extension):

marker x1 x2 empty stopper marker empty empty ¬x3

x2 ¬x3←− ←−

Fig. 2. (upper:) For the assignment (101), the Watson-Crick complements ¬x1, x2

and ¬x3 of the encodings for ¬x1, x2 and ¬x3 respectively are put to the test tube
and (middle:) x2 and ¬x3 are annealed to the DNA strand encoding the formula (x1 ∧
x2) ∨ (¬x3). (lower:) PCR extends the primers x2 and ¬x3 and both markers become
double-stranded.

Annealing:

marker x1 x2 empty stopper marker empty empty ¬x3

¬x3

⇓

PCR (extension):

marker x1 x2 empty stopper marker empty empty ¬x3

¬x3←−

Fig. 3. (upper:) For the assignment (111), the Watson-Crick complements ¬x1, ¬x2

and ¬x3 of the encodings for ¬x1, ¬x2 and ¬x3 respectively are put to the test tube
and ¬x3 is annealed to the DNA strand for (x1 ∧ x2) ∨ (¬x3). (lower:) PCR extends
the primer ¬x3, and the right marker becomes double-stranded and the left marker
remains single-stranded.



Solving Computational Learning Problems 227

Algorithm C(k, S):

Step 1. Produce all possible k-term DNF formulae and put them to the
test tube Th. This procedure can be done using a similar technique to
Adleman’s experiment [1] and Lipton’s one [7] as follows:
Consider the directed assembly graph in Figure 4. Any path from vin to
vout corresponds to a DNA strand encoding a k-term DNF formula. For
the directed graph for k-term DNF formulae, there are 3kn paths from
vin to vout which represents all possible k-term DNF formulae. Then by
careful encoding the vertices and edges with DNA single-strands for the
directed graph and doing the same biological operations as Adleman’s,
the soup in the resulting test tube contains DNA strands which encodes
arbitrary paths through the graph.

rrr

r r r

rrr

r

r

r�
�� @

@R �
�� @

@R �
�� @

@R
@
@R �

�� @
@R �

�� @
@R �

��v1
0

x1 x2 x3 xn

¬x1 ¬x2 ¬x3 ¬xn

v1
1 v1

2 v1
n

. . .- - - - - -

r

rr - - r- -r -rr rrrrr
marker

stopper
emptyemptymarkervin

r

r

r

r

r

r�
�� @

@R
@
@R �

��

x1 xn

¬x1 ¬xn

v2
0

vout

. . .
(k − 1 times)

- -

r

rr . . .

Fig. 4. An assembly graph for generating k-term DNF formulae.

Remark: The assembly graph in Figure 4 may produce a term consisting
of only empty sequences:

5′ − stopper − marker − empty − · · · − empty︸ ︷︷ ︸
n times

−3′

Hence before going to Step 2, we eliminate all DNF formulae which con-
tain such terms. This can be done by the following procedure: We put the
complementary sequences for all literals x1, x2, . . . , xn,¬x1,¬x2, . . . ,¬xn

on Xn into the test tube T , anneal them and apply PCR to T . If the
subsequence for the marker in a term remains single-stranded, it means
that the term consists of only empty sequences. We extract and elimi-
nate them.

Step 2. Let Th be the test tube containing all possible k-term DNF
formulae. Let S be the given sample.
– Set T = Th.
– For each positive example (a, 1) in S, run the algorithm B(T, a) and

extract DNF formulae whose truth-value is 1.
– For each negative example (a, 0) in S, run the algorithm B(T, a) and

eliminate DNF formulae whose truth-value is 1 and extract DNF
formulae whose truth-value is 0.

Step 3. Any DNA strands remaining in the final test tube are consistent
DNF formulae with the given sample. Detect one of them and output it.



228 Y. Sakakibara

It is clear that the algorithm C(k, S) runs in time (biosteps) linear in the size
of the given sample S. Hence it implies that the class of k-term DNF formulae
for any constant k is polynomially PAC learnable on DNA computers.

By the duality, it is also easily confirmed that the class of k-clause CNF
(conjunctive normal form) formulae for any constant k is polynomially PAC
learnable on DNA computers, where a clause is a disjunction of literals on Xn.

3.4 DNF Formulae Are Efficiently Learnable on DNA Computer

By employing the algorithm C(k, S), we show that the class of general DNF
formulae are efficiently learnable. Given a randomly drawn sample of size greater

than
size(α∗)n

ε
ln

(
3
δ

)
for the target DNF formula α∗, we iteratively use the

algorithm C(k, S) for each k from k = 1 to possibly k = size(α∗) until finding a
consistent DNF formula with S.

Algorithm D(S):

Let S be the given sample.

Set k = 1;
while (no DNF formula consistent with S is found) do {

call the algorithm C(k, S);
k = k + 1;
};

Output a DNF formula found consistent with S.

It is clear that the algorithm D(S) terminates at least by k = size(α∗)
and produces a DNF formula of smallest size consistent with S, and runs in
time (biosteps) proportional to the size of the given sample S. Hence it implies
that the class of general DNF formulae is polynomially PAC learnable on DNA
computers.

4 Parallel and Probabilistic Computational Aspects

It is addressed that there are two types of parallelism in the DNA computation
process of constructing superstructures from substructures. That is, the global
parallelism is that more than one construction of superstructure can proceed
in parallel in the test tube, and the local parallelism is that growth on each
individual superstructure may occur at many locations simultaneously.

In our algorithms for evaluating the encoded sequence e(β) for a k-term DNF
formula β = t1 ∨ t2 ∨ · · · tk, the evaluation of every term ti (1 ≤ i ≤ k) in β for
a truth-value assignment will proceed independently and simultaneously, that
is, the annealings and PCRs will happen in parallel at each term ti (local paral-
lelism). On the other hand, our learning algorithm makes use of the massively
parallel search (global parallelism).



Solving Computational Learning Problems 229

Here, we also study error-resistant DNA computations for our learning algo-
rithm. In the probabilistic model of learning (PAC model) that we are working
on, there are several researches for probabilistic noise-tolerant learning methods
[3,5,10]. By employing such noise-tolerant methods, we construct error-resistant
DNA computations for learning Boolean formulae. Here we consider the approx-
imate consistent learning algorithm studied in [3,5].

The approximate consistent learning algorithm is a polynomial-time learning
algorithm that produces a Boolean formula consistent with at least a fraction
1 − ε/2 of the given sample S with probability at least 1 − 2δ/3. (Note that the
constants “1/2” and “2/3” can be changed to any real values between 0 and
1.) For the class of k-term DNF formulae, a randomly drawn sample S of size
greater than

m ≥ 8kn

ε
ln

(
9
δ

)

is shown to be enough for the approximate consistent learning algorithm. We
apply this result to an error-resistant DNA computation for learning k-term
DNF formulae.

We consider the following three types of errors in the learning algorithm
C(k, S):

1. At Step 1, it fails to generate some of k-term DNF formulae,
2. At Step 2, it fails to extract DNF formulae whose truth-value is 1 for a

positive example (a, 1),
3. At Step 2, it fails to eliminate DNF formulae whose truth-value is 1 for a

negative example (a, 0).

The errors of type 1 and 2 causes the algorithm C(k, S) to fail to find a
consistent DNF formula. The error of type 3 causes the algorithm C(k, S) to
fail to eliminate a DNF formulae which does not agree with the example (a, 0).
By applying the approximate consistent learning algorithm, the total amount of
errors of type 1 is allowed at most δ/3, the total amount of errors of type 2 is
also allowed at most δ/3, and the total amount of errors of type 3 is allowed at
most ε/2. The details will be reported.

5 Conclusions

We have proposed new methods to encode DNF formulae to DNA single-strands
and evaluate the encoded DNF formulae in the test tube for a truth-value as-
signment by using hybridization and PCR. By employing these methods, we
have presented the DNA-based learning algorithms for polynomially learning
the class of k-term DNF formulae (for any constant k) and the class of general
DNF formulae that fully make use of massively parallel exhaustive search in the
test tube.

Most related is the work done by Hagiya et al. [4] and their method called
“whiplash PCR” [12]. Two important techniques in whiplash PCR have been de-
veloped: (1) PCR activity can be conveniently terminated by a stopper sequence



230 Y. Sakakibara

in the template (which is a technique used also in this paper), and (2) if the
3’ end of a DNA strand serves as the same strand’s primer, then an individual
DNA molecule can be a self-contained computational unit. They have described
how whiplash PCR can be used to solve the problem of learning µ-formulae from
the given sample. While whiplash PCR is a very powerful technique (Winfree
[12] has presented many O(1) computing solutions for NP-complete problems
using whiplash PCR), our proposed methods are much simpler and can be ap-
plied to the general DNF Boolean formulae and would be more adequate for
computational learning problems.

Our future work is to verify the feasibility of our methods by in-vitro exper-
iments.

Since we take a naive massively parallel exhaustive search, we need 3kn DNA
strands generated in test tube for learning k-term DNF formulae. This amount of
DNA strands contain much redundancy. Hence, other future work is to improve
the space efficiency.

Acknowledgments. We would like to thank Satoshi Kobayashi, Masami
Hagiya, Kensaku Sakamoto and Takashi Yokomori for their useful comments.
This work is supported in part by “Research for the Future” Program No. JSPS-
RFTF 96I00101 from the Japan Society for the Promotion of Science.

References

1. L. Adleman. Molecular computation of solutions to combinatorial problems. Sci-
ence, 266, 1994, 1021 – 1024.

2. A. Blumer, A. Ehrenfeucht, D. Haussler, M. K. Warmuth. Learnability and the
Vapnik-Chervonenkis dimension. Journal of the ACM, 36, 1989, 929 – 965.

3. R. Board, L. Pitt. On the necessity of Occam algorithms. Theoretical Computer
Science, 100, 1992, 157 – 184.

4. M. Hagiya, M. Arita, D. Kiga, K. Sakamoto, S. Yokoyama. Towards parallel evalu-
ation and learning of Boolean µ-formulas with molecules. In Proc. of Third Annual
Meeting on DNA Based Computers, 1997, 105 – 114.

5. M. Kearns, M. Li. Learning in the presence of malicious errors. In Proc. of 20th
Annual ACM Symposium on Theory of Computing, ACM, 1988, 267–279.

6. M. Kearns, U. Vazirani. An Introduction to Computational Learning Theory. MIT
Press, Massachusetts, 1994.

7. R. J. Lipton. DNA solution of hard computational problems. Science, 268, 1995,
542 – 545.

8. Gh. Păun, G. Rozenberg, A. Salomaa. DNA Computing. Springer-Verlag, Heidel-
berg, 1998.

9. L. Pitt, L. G. Valiant. Computational limitations on learning from examples.
Journal of the ACM, 35, 1988, 965 – 984.

10. Y. Sakakibara. Noise-tolerant Occam algorithms and their applications to learning
decision trees. Machine Learning, 11, 1993, 37 – 62.

11. L. G. Valiant. A theory of the learnable. Communications of the ACM, 27, 1984,
1134 – 1142.

12. E. Winfree. Whiplash PCR for O(1) computing. In Proc. of Fourth Annual Meeting
on DNA Based Computers, 1998.



The Fidelity of Annealing-Ligation: A
Theoretical Analysis

John A. Rose1 and Russell J. Deaton2

1 Institute of Physics, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo,
153, Japan, johnrose@genta.c.u-tokyo.ac.jp

2 Department of Computer Science and Computer Engineering, The University of
Arkansas, Fayetteville, Ark, 72701, USA, rdeaton@uark.edu

Abstract. Understanding the nature of the error propagation through
successive biosteps is critical to modeling the overall fidelity of compu-
tational DNA architectures. In this work, the fidelity of the compound
biostep annealing-ligation is discussed in the limit of zero dissociation,
within the framework of a simple statistical thermodynamic model. For
simplicity, a DNA ligase of ideal infidelity is assumed, with its error be-
havior taken as bounding that of real DNA ligases. The derived expres-
sion for the fidelity of annealing-ligation indicates that the error coupling
is both strong and dependent on sequence. Estimates of the fidelities of
annealing and annealing-ligation have also been calculated for various
encodings of Adleman’s graph, assuming a staggered zipper model of
duplex formation. Results indicate the necessity of including informa-
tion regarding the specific free energies and/or occupancies of accessible
duplex states, in addition to information based purely on sequence com-
parison.

1 Introduction

The experimental feasibility of biomolecular computing was demonstrated in
1994 by Leonard Adleman [1]. In his classic experiment, the solution to a simple
instance of the Hamiltonian Path Problem (HPP) was successfully computed
in vitro, employing only a mixture of ssDNA molecules and a series of pro-
tocols adapted from molecular biology. Although the problem instance solved
was computationally modest, the number of hybridization and ligation reactions
that occured during the course of the computation (≈ 1014) suggested that the
solution of much larger instances should, in principle, be feasible. As noted in
the original proposal, the potential of the algorithm to effect roughly 1020 sep-
arate ligation events using physically reasonable DNA volumes compares quite
favorably with the number of basic operations (roughly 1012 operations/second)
achievable by the fastest supercomputers.

The initial excitement generated by the massive parallelism inherent in DNA
computation has been moderated somewhat by the difficulty experienced by re-
searchers attempting to repeat and scale Adleman’s methodology [2]. As a result,
a variety of studies have focused upon the propensity of the various biotechniques

A. Condon (Ed.): DNA 2000, LNCS 2054, pp. 231–246, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



232 J.A. Rose and R.J. Deaton

to deviate from the ideal behaviors assumed by the computational model [3-7].
In lieu of a complete error analysis, a popular approach has been to attempt to
remedy DNA computation by means of iteration, modification, or complete elim-
ination of a suspected error-prone biotechnology. As a result, the computational
power of an impressive array of alternative DNA computational architectures
has now been theoretically explored.

The scaling and standardization of biomolecular computing techniques re-
quires that the fidelities of the various biosteps be quantified. Such a charac-
terization not only aids in eliminating uncertainty, but also provides a basis
for engineering reliable and efficient computations. The fidelity and efficiency of
many of the biotechniques which are critical to DNA computation, such as solid
phase synthesis [8], DNA ligation [6,7], and DNA polymerization [9], have al-
ready been subjected to individual scrutiny. However, because the result of each
phase in a biomolecular computation depends upon the results of the previous
step, the tendency for post-annealing enzyme-based biosteps (i.e., ligation, poly-
merization, digestion) to propagate or generate error is critically dependent not
only upon the overall fidelity of the annealing reactions, and that of the enzyme
employed, but also upon the identity and relative abundance of the actual set
of dsDNA molecules formed during annealing. As a concrete example, in the
annealing biostep of Adleman’s original architecture, the formation of sets of
adjacent DNA duplexes is accomplished by parallel hybridization. A subsequent
ligation reaction then acts upon the set of dsDNA precursors formed during the
annealing biostep. An analysis of the error potential of the compound process
formed by annealing followed by a post-annealing ligation, therefore, must begin
with a quantitative consideration of the particular hybridization reactions which
dominate the initial annealing phase. Rather than being independent, and hence
separable, the fidelity of successive biosteps is intrinsically coupled.

In previous work, the statistical thermodynamic theory of the DNA helix-
coil transition was used to derive a limiting expression for the potential for
hybridization error for a mixture of DNA oligonucleotides [10]. Following brief,
motivating reviews of the computational incoherence and the fidelity of various
DNA ligases, the theory of statistical thermodynamics is used to discuss the
error behavior of successive annealing and ligation biosteps, in the limit of zero
dissociation. The coupling of error between the annealing and ligation biosteps
is shown to be strong in nature, in the sense that the overall fidelity of coupled
annealing-ligation is not expressible as a product of the fidelities of the individual
biosteps, but rather, includes a

factor which depends upon both the specific nature of the DNA ligase and
the specific sequences of molecules designed for the problem (i.e., the encoding).

2 The Computational Incoherence, ξ

The theory of DNA statistical thermodynamics has recently been used to discuss
the hybridization error probability for an annealing mixture of single stranded
(ss) DNAs, and to derive a simple expression for the error behavior of the mix-



Annealing-Ligation Fidelity 233

ture in the limit of zero (or more generally, uniform) dissociation [10]. In order
to ensure a high occupancy of potential hairpin-forming species in an alternative
dimerized form, attention was also restricted to the limit of high counterion con-
centration. In addition, each ssDNA species was assumed to have at least one
high-affinity partner, in order to allow for the uniform attainment of low disso-
ciation, in the limit of low reaction temperature Trx. The resulting expression,
dubbed the computational incoherence, is given by:

ξ ≈
∑

i,j≥i C◦
i C◦

j

∑
k δijkZijk

∑
i,j≥i C◦

i C◦
j

∑
k Zijk

, (1)

where Zijk is the statistical weight of hybridized configuration k between DNA
species i and j, and δijk is a function which equals 1/0 if the hybridized configu-
ration {i,j,k} is forbidden/allowed by the hybridization rules of the computation.
The sums are taken over all pairs of ssDNA species, i and j, and over all dou-
ble stranded configurations k which are accessible to the indicated hybridized
species, i and j. For the case in which all initial concentrations of ssDNA reac-
tants are approximately equal, ξ reduces to the simpler form:

ξ ≈
∑

i,j≥i

∑
k δijkZijk

∑
i,j≥i

∑
k Zijk

=

∑
i,j≥i Zij

e∑
i,j≥i Zij

c

, (2)

where the sum over the statistical weights of all double-stranded configurations
between species i and j has been recognized as the conformal partition function,
Zij

c for i and j [11], and Zij
e is identified as the sum over the statistical weights,

or equivently the equilibrium constants, of all erroneous configurations between
i and j. An immediate consequence of this expression is the prediction that, at
least in the absence of extreme variations in the equilibrum concentrations of
ssDNA species, high fidelity is achieved by jointly minimizing the equilibrium
constants of erroneous hybridized species.

The best method of estimating the statistical weights of the set of accessible
configurations is a separate, and critical issue. In practice, evaluation depends
upon the model of duplex formation employed. The use of a general model, in
which every double-stranded configuration is regarded to have significant occu-
pancy, is most accurate. The exponential number of configurations, in terms of
length, which must be independently assessed, however poses significant practi-
cal difficulties. In [10], attention was restricted to mixtures composed of short
ssDNAs, facilitating the use of a statistical, or “staggered” zipper model. In the
classic staggered zipper model, configurations which require multiple nucleation
events are regarded to have negligible occupancy [11]. Each relevant configu-
ration is then characterized by a single, Watson-Crick duplex. The statistical
weight of each dsDNA configuration is related to the standard Gibbs free energy
of formation of the duplex from isolated single strands, ∆G◦

ijk, by the expression,

Zijk = exp(−∆G◦
ijk

RTrx
), (3)



234 J.A. Rose and R.J. Deaton

where R is the molar gas constant and Trx is the Kelvin temperature [11]. Ac-
cording to the nearest-neighbor model of duplex formation [12], ∆G◦ is estimated
by:

∆G◦ =
∑

nn

∆G◦(nn) +
∑

ends

∆G◦(init) + ∆G◦(sym), (4)

where first term accounts for the free energy of base-pair stacking, and is a
sum over the set of nearest-neighbor doublets, nn, which are contained in the
configuration’s lone duplex, the second term is a length-independent initiation
parameter which estimates both the free energy of strand association (∆G◦

str.as.)
and the effects of unwinding at each duplex terminus, and the third term is an
entropic penalty applied only to palindromic duplexes. A set of nearest-neighbor
parameters appropriate for the prediction of the free energy of both oligonu-
cleotides and polynucleotides was reported in [12]. The use of a staggered zipper
model, combined with a nearest-neighbor model of duplex formation, allows a
polynomial-time estimation of ξ vs. Trx.

3 The Fidelity of DNA Ligases

The joining of the sugar-phosphate backbones of a pair of ssDNAs, resulting
in the formation of a single backbone, is known as DNA ligation. Because of
the importance of ligation in DNA repair and recombination [13], the ability to
produce at least one form of DNA ligase is common to all organisms, whether
prokaryotic, eukaryotic, or viral. Conceptually, joining is accomplished by the
formation of a phosphodiester bond between directly adjacent 3’-hydroxyl and
5’-phosphoryl groups. Although dsDNA molecules with either cohesive or blunt
ends may serve as a substrate for ligation, cohesive end ligation is much more
efficient [14]. Ligation is therefore usually template-mediated, in that the pair
of ssDNAs to be joined must be held in proximity by hybridization to a third
splinting ssDNA molecule. In any case, substrate DNAs must be duplex. Single-
stranded DNA does not serve as substrate for DNA ligase [15].

The fidelity of various DNA ligases has been examined in vitro. One of the
most popular DNA ligases, and the DNA ligase used by Adleman [1] is the
DNA ligase induced in Escherichia coli following infection with the T4 bacte-
riophage, or the T4 DNA ligase. A well known drawback to using T4 DNA
ligase is its ability to efficiently catalyze blunt-end ligation [14]. This ablility
is so pronounced that an unpaired nucleotide protruding at the 3’ or 5’ end of
a complementary strand does not prevent efficient blunt-end ligation [16]. In
addition, T4 DNA ligase has been demonstrated to efficiently catalyze ligation
reactions containing a wide variety of mismatched and “improperly” hybridized
substrate oligonucleotides. Experiments indicate that T4 DNA ligase seals nicks
with 3’ or 5’ apurinic sites [16], a 1 nucleotide gap [16], 3’ or 5’ terminal A-A or
T-T mismatches [16], 5’ terminal G-T mismatches [17], 3’ terminal C-A, C-T,
T-G, T-T, T-C, A-C, G-G, or G-T mismatches [18], and a variety of internal
mismatches [19]. On the other hand, T4 ligase does display some ability to reject
mismatched substrate molecules, and is roughly 5 times more efficient at sealing



Annealing-Ligation Fidelity 235

a mismatch at the 3’ terminus [20]. This superior ability to discriminate versus a
5’ (relative to 3’) terminal mismatch is atypical among DNA ligases. In addition,
recent studies suggest successful discrimination by T4 DNA ligase versus sub-
strate molecules containing multiple terminal mismatches [7]. It is noteworthy
that the efficiency of T4 DNA mismatch ligase decreases with increasing NaCl
concentration [20].

Another viral DNA ligase which has been subjected to scrutiny is that en-
coded by the Vaccinia virus [21]. Although Vaccinia ligase was observed to dis-
play strong discrimination ability versus 1 and 2 nucleotide gaps and 3’ purine-
purine mismatches, it tolerated a wide variety of other mismatched substrate
molecules. Vaccinia ligase was observed to seal substrate molecules contining 3’
C-A, C-T, G-T, T-T, and G-T mismatches, 5’ C-T, G-T, T-T, A-C, T-C, C-C,
G-G, T-G, or A-G terminal mismatches readily [21]. A tendency to discriminate
3’ over 5’ terminal mismatches is regarded as typical for DNA ligases.

The DNA ligase purified from uninfected Escherichia coli has been examined
as a possible candidate for use in DNA computation, because of its reported
inefficiency at catalyzing blunt-end ligation [6]. This study was particularly in-
teresting because it included an assessment of the tolerance of DNA ligase to a
combinatorial mixture containing all possible mismatched molecules of length 12.
Although E. coli ligase was observed to demonstrate some discrimination ability
versus terminal mismatches, it was also observed to tolerate a wide spectrum
of internally mismatched and frameshifted substrate molecules. In particular,
each successfully ligated molecule was observed to contain an average of 3.3
mismatches. In fact, if frameshifted (bulged) nucleotides are included, successful
ligation was observed for substrate molecules containing mismatches at as many
as 7 of 12 possible positions.

Several thermostable DNA ligases have been observed to demonstrate an ap-
parent reliability superior to E. coli or T4 DNA ligase. The DNA ligase derived
from Thermus aquaticus (Taq) is a case in point. At thermophilic temperatures,
Taq DNA ligase was observed to display enhanced ability (roughly, from 10 to
100-fold, in terms of final product) to discriminate versus all mismatches stud-
ied (terminal 3’, only) [22]. In addition, the fidelity displayed was observed to
be moderately invariant to salt concentration, in contrast to that of mesophilic
ligases. Some caution in interpreting the results, however, is in order. The sin-
gle experiment reported using Taq ligase was performed at 65◦C, for a set of
oligonucleotides with Tm values in the range from 66 − 70◦C. Differences in the
total amounts of ligated product for perfectly matched vs. partially mismatched
oligonucleotide substrates will therefore reflect the enhanced dissociation of mis-
matched substrate as well as the discrimination ability characteristic of the en-
zyme. In addition, only 3‘-terminal mismatches were studied. As a result, the
discrimination ability of Taq DNA ligase to 5’-terminal and internal mismatches
remains an open question.

Thermostable DNA ligase derived from Thermus thermophilus (Tth) has also
been reported to demonstrate enhanced reliability (relative to T4 and E.coli
DNA ligases) at a variety of temperatures. In [23] (65◦C), Tth ligase was observed



236 J.A. Rose and R.J. Deaton

to exhibit a strong ability to discriminate versus substrate molecules containing
3’ terminal mismatches, with only GT and TG detected. The observed fidelity
versus 5’ terminal mismatches, however, was substantially lower. In [24] (37◦C),
Tth ligase was reported to efficiently ligate substrate containing single 5’ terminal
mismatches, and it addition, to ligate substrate containing tandem 5’ terminal
mismatches, albeit inefficiently. In addition, Tth ligase was observed to ligate
substrate molecules having single internal mismatches at any position, although
in each case, with reduced efficiency. The most recent study [25], performed at a
variety of temperatures [25] (44◦, 46◦, 48◦, and 50◦C), is distinguished in that it
assessed the ligation fidelity of Tth ligase versus a combinatorial mixture of all
substrates of length 9. The primary new result was that although Tth ligase could
successfully ligate substrate molecules containing single and multiple mismatches
at any position, a strong bias exists for the occurance of mismatches containing
guanine, and for mismatches occuring at positions 5 and 9, relative to the 3’
terminus, which is suggestive of enzyme-specific anchorage requirements.

The fidelities of eukaryotic DNA ligases are less well characterized. For a
particular bacterial species, all ligation reactions appear to be catalyzed by the
bacterium’s single general-purpose DNA ligase. In contrast, the various ligation
reactions observed in a eukaryote are often the result of a set of distinct, highly
specialized DNA ligases [26]. For instance, at least 5 distinct species of DNA
ligase (I-V) have been purified from mammalian cells [27]. As a result of this
specialization, a particular eukaryotic DNA ligase is often unable to carry out
ligations between arbitrary oligonucleotides [27]. An exception is the yeast, Sac-
charomyces cerevisiae, which has been observed to harbor only a single, general-
purpose DNA ligase. Although S. cerevisiae DNA ligase has been observed to
discriminate against 3’ A-G or T-G mismatches as well as a 1 nt gap, its marked
efficiency in sealing other mismatches has prompted speculation that the DNA
ligase may play a major role in mutation [28].

The literature on the ability of DNA ligases to efficiently perform various
types of mismatch ligations is largely qualitative, and is fragmentary in nature.
The clearest result is that DNA ligases differ substantially in fidelity, often in
a complicated manner. An overall picture, however, has begun to emerge. As
noted in [24], the observed fidelity of a given DNA ligase is expected to be due
to three factors: (1) The relative duplex instability caused by mismatches; (2)
an observed necessity for the particular ligase to make contacts with the DNA
duplex at some subset of nucleotides beginning with, and extending away from,
the site of closure. Various ligases will therefore be expected to fail to ligate oligos
below some threshold length; (3) The need for a correct “duplex-like” geometry
of the DNA substrate for recognition by the ligase active site.

The relative contribution of each factor to overall ligase fidelity is an open
question. Discrimination anticipated from duplex formation alone, however, is
substantially lower than the discrimination by ligases actually observed [25]. This
conclusion is supported by the relative ligation rates of mismatches at the 3’ and
5’ termini. In [23], it was noted that if ligation fidelity were mainly dependent
upon the stacking-induced stability of the duplex in the vicinity of the junction,



Annealing-Ligation Fidelity 237

then duplex stability would be expected to be higher for the 5’ terminus than
the 3’ terminus, given the observation that Tth ligase discriminates against 3’
mismatches more efficiently. As the theoretical stacking stability was calculated
to be lower on the 5’ side, however, the observed differential fidelity of Tth
ligase for mismatches at the 3’ terminus vs. those on the 5’ terminus is not
due to duplex energetics, but rather to a more stringent 3’ terminus recognition
requirement of the enzyme. A greater fidelity to 3’ vs. 5’ mismatches has also
been observed for virally-derived (Vaccinia virus [21]), prokaryotic (Taq [22],
E. coli [6]), and eukaryotic (S. cerevisiae [28]) DNA ligases. As noted earlier,
the opposite trend in discrimination (5’ over 3’) which is exhibited by T4 DNA
ligase, however, indicates that a relative 3’ over 5’ mismatch fidelity is not a
general feature of DNA ligases. Another observation which suggests that local
base pair stability is not the primary factor influencing ligase fidelity at the site
of ligation is that both bacterial and mammalian DNA ligases have a very high
fidelity vs. all purine-purine mismatches, including 3’ G-A or A-G mismatches,
which are among the most stable of the mismatches [18,21,23].

Several studies indicate that the fidelity of DNA ligases to mismatches at
positions other than the 5’ and 3’ termini is neither random nor in accordance
with that expected from helix stability considerations [6,24,25]. Tth DNA ligase
shows mismatch “hot-spots” for mismatches at the middle position and for mis-
matches at the 5’ terminus, while the best fidelity is observed vs. mismatches
at nucleotide position 4 (3 nucleotides from the 3’ terminus) [25]. Ligation of
mismatches at the rest of positions have roughly equal reliability. This set of
results is counter to that expected a priori from stability considerations, but
is consistent with the observed requirement of DNA ligases for contact points
beyond the 3’ and 5’ termini [25].

4 Bounding the Fidelity of Annealing-Ligation

The computational incoherence (ξ) provides a well-defined statistical measure of
the hybridization error potential of a DNA mixture, under the conditions of low
dissociation and high counterion concentration. From the perspective of a molec-
ular observer sampling the error state of hybridizations in the mixture, all com-
putationally forbidden modes of hybridization are equivalent, and are therefore
grouped into a single error “state” for the calculation of ξ. As noted previously,
however, an annealed ensemble is usually intended to serve as precursor to a
secondary, enzymatically-implemented biostep (i.e., ligation, in Adleman’s algo-
rithm). As a result, the impact of each error mode on the overall reliability of the
computation will not be uniform, but rather will acquire an enzyme-dependent
context sensitivity. The computational incoherence is therefore not adequate to
provide a complete assessment of the reliability of the computational process.
In order to relate ξ to the overall fidelity, it is necessary to extend the results
of a statistical mechanical analysis of hybridization error to include the impact
of a secondary enzymatic process. Although there are numerous instances of
such compound processes (i.e., hybridization followed by exonuclease digestion,



238 J.A. Rose and R.J. Deaton

DNA ligation, or DNA polymerization), for clarity, attention is restricted to a
consideration of ligation error in an annealed DNA mixture at equilibrium.

From the previous discussion on ligase fidelity, it is clear that the potential
for error ligation is a function of a variety of variables, including the potential for
contiguous error hybridizations in the annealing ensemble, and both the proces-
sivity and fidelity of the specific ligase enzyme chosen to catalyze the reaction.
It is also clear, however, that as a catalyst, ligase may only catalyze reactions
for which there exist a set of precursor molecules. Ligation error potential may
therefore be effectively assessed by identifying the subset of error hybridizations
most likely to generate ligation error, and estimating the relative abundance of
this subset. Likewise, the overall fidelity of the set of ligation reactions occuring
in the mixture may then be enforced by encoding to minimize the abundance
of this fraction. In the absence of a significant population of error precursor
molecules, the fidelity of the various DNA ligases becomes a secondary issue.

In Adleman’s architecture, a single ligation event requires two independent
hybridization events. However, the analysis of the propensity of an annealed mix-
ture to ligation error may be simplified by recognizing that those hybridization-
error configurations which are suitable for ligation with an adjacent non-error
(expected) hybridization will experience a greatly enhanced probability of liga-
tion, relative to other error configurations. Let such error ligations, which require
only a single hybridization error (in addition to a planned hybridization event)
for expression, be termed first order ligation errors. In order to facilitate a first-

Vd

j

Error
Hybridization

(molecules i,j)

Expected
Hybridization

(putative)

i

ends must be within small volume, 

For First-Order Error Ligation,

"loop" 
region

Fig. 1. A First Order Ligation Event

order ligation error, a configuration must satisfy a minimum set of requirements
(see Fig. 1). First of all, the configuration of one hybrid must contain an error du-
plex region which does not interfere with participation in one or more additional,
expected hybridizations. Note that a particular error mode of hybridization be-
tween ssDNA species i and j may facilitate from zero to two separate first order
error ligation events, depending upon the location of the error duplex relative
to the midpoints of ssDNA species i and j. In addition, for successful ligation,
appropriate ss regions of the configuration must be oriented in a manner which
facilitates a first-order error ligation event. This is simply the requirement that



Annealing-Ligation Fidelity 239

the relevant free end of the error duplex be in a position allowing formation of
a secondary nucleation near the appropriate end of a planned hybridization. As
illustrated in Fig. 1, this the requires that the two ends for ligation approach to
within a small reaction volume, δV. Given the negligible enthalpy of nucleation in
aqueous solution, the condition of proximity is considered here to be the primary
determinant of ligatability, and the specific nature of the secondary nucleation
event (i.e., the specific hydrogen bond formed) is neglected. The potential for
formation of stacked base pairs in the “loop” region between the secondary nu-
cleation site and the error duplex can be expected to impact the potential for
facilitating a first order ligation error. If the degree of stacking in this region
is sufficient to generate an intact duplex, it must be considered as a distinct
configuration, and treated separately. The formation of isolated stacks or short
stacked segments (each of length ≤ 3 bps) however, is extremely unfavorable due
to the size of the cooperativity parameter [29], and can be assumed to make a
negligible contribution to the overall statistical weight.

The absence of significant stacking interactions at specific areas in the loop
region can also be expected to have an inhibitory impact on the ability of the
various DNA ligases to successfully anchor themselves to and ligate substrate
molecules, the presence of favorable minimum conditions notwithstanding. Un-
fortunately, the obvious promiscuity of the various DNA ligases, combined with
the fragmentary, qualitative nature of current information on ligase fidelity, ob-
viates any attempt to quantitatively weight candidate configurations for ligata-
bility based on ligase substrate specificity, effectively preventing a meaningful
statistical estimate of first order ligation error propensity. On the other hand,
by considering the action of a theoretical ultrapotent DNA ligase, which has zero
substrate specificity within this loop region, an upper bound on the propensity
of each configuration, and thus of a particular encoding, to first order ligation
errors may be computed successfully.

The assignment of a total statistical weight, Zijk
fle to the configuration in Fig. 1

relative to that of the unstacked, separated single strands requires some care.
The statistical weight of the (error) duplex region, Zijk may be estimated from
the specific duplex composition, using the nearest neighbor model (equation 4)
and the parameter set described in [12]. For a configuration containing multiple
duplex regions punctuated by an internal loop, an estimate of the overall sta-
tistical weight of the internal loop is given by σ

1
2 f(m)σ

1
2 = σf(m), where each

factor of σ
1
2 accounts for the loss of a stabilizing stacking interaction at a closing

base pair of the loop, in addition to a loop normalization factor. The normal-
ized probability that a loop of m broken base pairs will occupy a configuration
appropriate for cyclization, f(m), is estimated by:

f(m) =
1.0

(1 − 1.38−0.1m)(m + 1)1.7 , m ≥ 4, (5)

with cited specific values of f(m) used for m < 3 [29]. This suggests the form,
Zijk

fle = σ
1
2 f(m)Zijk. However, because a factor of σ is included implicitly in

the chain association parameter, β = exp[−∆G◦
str.as./RTrx] [29], the explicit



240 J.A. Rose and R.J. Deaton

inclusion σ
1
2 in Zijk

fle is redundant when the initiation parameters of the nearest-
neighbor model have been applied to estimate the statistical weight of the duplex
and bimolecular association. The correct form of the statistical weight is therefore
given by:

Zijk
fle = f(m)Zijk, (6)

with f(m) = 0 for configurations with zero probability of facilitating the required
secondary nucleation.

Let χ be the equilibrium average number of first-order error ligation events
that a randomly observed hybridization is suitable to facilitate (with an adjacent
planned hybridization) in the presence of the hypothetical ultrapotent ligase.
An expression for χ in the limit of zero dissociation is obtained by a statistical
thermodynamic development parallel to that previously presented in detail for
ξ. In the first-order error ligation model, any error hybrid may participate in up
to two distinct ligation events. The desired expression is therefore given by:

χ ≈
∑

i,j≥i

∑
k δijkZijk

∑
l f(ml)

∑
i,j≥i Zij

c

=

∑
i,j≥i Zij

fle∑
i,j≥i Zij

c

, (7)

where the index l sums over all first order ligatable configurations facilitated by
error hybrid ijk and Zij

fle is total statistical weight of all configurations between
species i and j which may facilitate a first order error ligation. χ is related to ξ
by the expression:

χ ≈
∑

i,j≥i Zij
fle∑

i,j≥i Zij
e

∑
i,j≥i Zij

e∑
i,j≥i Zij

c

=< Nfle
e > ξ, (8)

where the bounding quantity, < Nfle
e > is recognized as an upper bound on

the average number of distinct first-order error ligations (FLE) which may be
facilitated by a randomly observed hybridization error (HE). Note: 0 ≤ χ ≤ 2.

A related quantity, the average probability that a randomly observed hy-
bridization occupies a state which facilitates some first-order error ligation with
an adjacent planned hybrid is estimated by:

p(FLE, HE) ≈ < Nfle
e >

Nmax
ξ, (9)

where Nmax = 2 is the maximum number of first-order ligation errors which any
hybrid may facilitate. Since terms in the numerator of (9) are nonzero for any ijkl
which describes an error hybridization (δijk = 1), and has nonzero probability of
first-order error ligation with an adjacent expected hybrid (Zijk

∑
l f(ml) 6= 0),

< N ijk
e > /Nmax is identified to be the conditional probability, p(FLE|HE).

5 Results

A Java package, NucleicPark, was developed to estimate ξ and χ, assuming a
Watson-Crick, statistical zipper model of duplex formation [10,30]. χ was cal-
culated for the following encodings of Adleman’s original experiment: (a) the



Annealing-Ligation Fidelity 241

original set [31], (b) a set constructed from the Modified DeBruijn sequence
listed in [3], (c,d) sets with good, bad modified-Hamming properties [5], (e,f)
sets with good, bad stringency properties [32], and (g) a set with minimal ξ [10].
Results for each encoding, for Trx from 5◦C to an estimated low dissociation
limit, Tmax

rx , are shown in Fig. 2, along with the mean χ of a population of 1000
random encondings. An uncertainty in ∆G◦ was calculated for each accessible
duplex configuration as suggested in [12]. The resulting fractional uncertainty
in log χ, estimated by standard error propagation, was ≤ 1% for all values. In

��������

��������

��������

��������

�������	

��������

��������

��������

�����
��

� �� �� �� �� �� �� �� �� ��


����������

�
��
�
��
�
�
�
�
��
�
��
�
�
�
�
�

�����������
��������

 ������!���������

����"����#������$�
��������

����"����%������
���������&����'

����"����%������
���������&(��'

)��������*���+��
���������&����'

)��������*���+��
���������&(��'

,�����������!
-���.���������+��

�

Fig. 2. log χ vs. Trx for encoding sets (a-g), reported from 5◦C to an estimated T max
rx .

All values assume a Watson-Crick, statistical zipper model of duplex formation.

order to facilitate a comparison between ξ and χ, values of log ξ [10], log χ,
and p(FLE|HE) at 25◦C for sets (a-g) are listed in Table 1. For purposes of
standardization, ξ and χ was also assesed for 1000 randomly generated encod-
ings. Both quantities were observed to follow a roughly lognormal distribution,
characterized by the listed mean and standard deviations. A bound on the total
initial concentration of first order ligatable substrates Cfle

0 was also estimated
using the relation, Cfle

0 ≈ Ntotalχ/AvVrx, where Av is Avagadro’s number, the
reaction volume, Vrx was taken to be 100µL, and a total of 50 pmoles of each ss-
DNA species was assumed, for a total initial ssDNA pool of size 6.6E14 strands.
Ntotal, the total number of hybridizations, was assumed to roughly equal this
number in the low dissociation limit.



242 J.A. Rose and R.J. Deaton

Table 1. log10 ξ, log10 χ, p(FLE|HE), and Cfle
0 at 25◦C for encoding sets (a-g).

Encoding log ξ log χ p(FLE|HE) Cfle
0

Mean Random -4.85 ± 2.26 -6.62 ± 1.48 0.085 2.64E-12 M
(a) Original -6.01 -7.14 0.037 7.97E-13 M
(b) DeBruijn -5.89 -6.21 0.243 6.78E-12 M
(c) Hamming (good) -6.06 -7.12 0.0439 8.34E-13 M
(d) Hamming (bad) -2.00 -1.97 0.985 1.18E-07 M
(e) Stringency (good) -6.98 -8.36 0.0211 4.80E-14 M
(f) Stringency (bad) -1.84 -1.53 1.00 3.25E-07 M
(g) ξ-Based -10.82 -11.62 0.080 2.64E-17 M

6 Discussion

Interpreted as a measure of annealing-ligation fidelity, χ is a zero-dissociation
estimate of the average propensity of a hybridized DNA mixture to generate
substrates for a theoretical ultrapotent DNA ligase enzyme, which displays zero
ability to discriminate versus partially mismatched dsDNA substrate. χ thus
expresses an upper bound on the annealing-ligation error potential of a given
encoding set, relative to the performance of actual DNA ligases. Because of
the fragmentary, qualitative nature of current information regarding DNA ligase
fidelity and processivity, the derivation of a tighter theoretical expression for a
bound does not appear to be presently feasible.

The bounding nature of χ complicates absolute comparisons of the ligation
fidelities of encoding sets (a-g). It would appear, however, that models of fidelity
which rely strictly on DNA sequence comparison are less capable of ensuring
minimal occupancy of the types of configurations which are predicted to facil-
itate both ligation and hybridization errors. This result suggests the necessity
of including additional information regarding the specific free energies and/or
occupancies of accessible duplex states. On the other hand, the actual behavior
of sets (a-g) in the presence of real DNA ligases would probably, but not neces-
sarily, correlate with the bounding behavior indicated by χ. Absolute orderings
could change with the DNA ligase actually used, for instance.

An additional result is that the probability that a randomly observed hy-
brid is a hybridization error, and that it facilitates a first order ligation er-
ror, are not independent. Consider the probability p(FLE, HE) of observ-
ing a configuration which generates both types of error. Independence implies
p(FLE, HE) = p(FLE)p(HE). Expression (9), however, indicates the contrary
result,

p(FLE, HE) =
< Nfle

e >

Nmax
ξ = p(FLE|HE)p(HE). (10)

Results in Table 1 indicate that the coupling factor p(FLE|HE) is in general,
poorly correlated with ξ. This result supports the intuitive notion that develop-
ing encodings with minimal biostep error-coupling might be additional means of



Annealing-Ligation Fidelity 243

increasing reliability. In addition, this result suggests that attempts to construct
a model of overall fidelity from independent considerations of biostep fidelity are
poorly motivated, at least in the case of annealing-ligation.

Estimation of ξ and χ requires explicit calculation of the equilibrium con-
stants of the various duplex species. This requires the use of various approxi-
mations. Values listed were computed using a classical statistical zipper model
of duplex formation. As a result, values listed properly refer to the probability
of observing a Watson-Crick-complementary error mode of hybridization, and
should therefore be recognized to provide only an tentative picture of the overall
error occupancy for the mixtures examined. In particular, there are theoretical
grounds to suspect that the standard statistical zipper model may be inade-
quate. The validity of the model is typically justified for short DNAs by noting
the large multiplicative penalty (σ ≈ 4.5 × 10−5 [29]) assigned to configurations
containing an internal loop, due to the loss of a stacking interaction at each end.
In practice, a statistical zipper model is usually considered to be adequate for
quasirandom DNAs of length less than approximately 100 base pairs, based on
good agreement with experimentally derived DNA melting curves [33].

In addition to neglecting configurations containing internal loops, however,
the staggered zipper model also neglects configurations containing bulges, as
well as single and tandem mismatches. For the case of the melting of an ensem-
ble of matched strands, configurations containing bulges are generated primar-
ily through strand slippage into a stable alternative configuration, a situation
which is relatively unlikely to occur during the melting of quasirandom DNAs.
For applications other than melting, however, assuming the broad negligibility
of bulged configurations appears to be less justifiable, due to the smaller size
penalty for a single base bulge (roughly σ1/2) [34]. In any case, calculated values
of ξ and χ, while incomplete in the sense that a statistical zipper model was
assumed, clearly indicate that the coupling factor, < Nfle

e > is strongly encod-
ing dependent, and in general, much different than unity, a result which seems
unlikely to be altered by utilizing a more precise model of duplex formation.

7 Conclusion and Further Work

Within the framework of a simple statistical thermodynamic model, the nature
of the error coupling of successive annealing and ligation biosteps has been dis-
cussed for the limit of zero dissociation. Based on the fragmentary nature of
the literature on ligase fidelity, the use of a DNA ligase of ideal infidelity, with
behavior expected to bound that of actual DNA ligases, was assumed. Results
indicate that models of fidelity which rely solely on DNA sequence comparison
are less capable of ensuring minimal occupancy of the types of configurations
which are predicted to facilitate both ligation and hybridization errors. This
result suggests the necesssity of including additional information regarding the
specific free energies and/or occupancies of accessible duplex states. In addition,
the presence of a coupling factor in the derived expression for overall fidelity



244 J.A. Rose and R.J. Deaton

is evidence that attempts to construct analytical models of overall fidelity from
independent considerations of bistep fidelity are poorly motivated.

The expressions presented for χ and ξ are independent of the model of du-
plex formation used to perform calculations. Listed values of ξ and χ, however,
assume a statistical zipper model. Current work is focused on implementing an
improved model of duplex formation. Based on observations of bulged RNAs
[35], the statistical penalty applied to configurations containing a multiple-base
bulge averages ≈ 4.0×10−5 (roughly σ) for a two-base bulge, and increases with
loop size. This suggests the use of a modified statistical zipper model, which
neglects configurations with internal loops, multiple-base bulges, and/or mul-
tiple bulges, but includes configurations with both single internal mismatches
and single one base bulges. Such a model maintains the polynomial size of the
configurational subspace while implementing a more uniformly realistic model of
duplex formation. Preliminary results indicate that configurations with internal
mismatches or a single base bulge may contribute significantly to both ξ and χ.

References

1. L. M. Adleman, ”Molecular Computation of Solutions to Hard Combinatorial
Problems”, Science 266, 1021 (1994).

2. P. D. Kaplan, G. Cecchi, A. Libchaber, “DNA Based Molecular Computation:
Template-Template Interactions in PCR”, DNA Based Computers III, Princeton
University, 1999, DIMACS Proc. Series (American Mathematical Society, Provi-
dence, RI, 1999).

3. W. D. Smith, “DNA Computers in Vitro and Vivo”, in R. J. Lipton, E. B. Baum,
editors, DNA Based Computers, (American Mathematical Society, Providence, RI,
1996), 121.

4. M. Amos, A. Gibbons, D. Hodgson, “Error-Resistant Implementation of DNA
Computations”, in, L. F. Landweber and E. B. Baum, editors, DNA Based Com-
puters II, (American Mathematical Society, Providence, Rhode Island, 1999), 151.

5. R. Deaton, M. Garzon, R. E. Murphy, J. A. Rose, D. R. Franceschetti, S. E.
Stevens, Jr., “Reliability and Efficiency of a DNA-Based Computation”, Physical
Review Letters, 80, 417 (1998).

6. K. D. James, A. R. Boles, D. Henckel, A. D. Ellington, “The Fidelity of Template-
Directed Oligonucleotide Ligation and its Relevance to DNA Computation”, Nu-
cleic Acids Research, 26, 5203 (1998).

7. Y. Aoi, T. Yoshinobu, K. Tanizawa, H. Iwasaki, “Ligation Errors in DNA Com-
puting”, Biosystems 52, 181 (1999).

8. T. Brown, D. J. S. Brown, “Purification of Synthetic DNA”, Methods in Enzymol-
ogy, 211, 20 (1992).

9. H. Echols and M. F. Goodman, “Fidelity Mechanisms in DNA Replication”, Annu.
Rev. Biochem. 60, 477 (1991).

10. J. A. Rose, R. J. Deaton, D. R. Franceschetti, M. Garzon, S. E. Stevens, Jr.,
“A Statistical Mechanical Treatment of Error in the Annealing Biostep of DNA
Computation”, in W. Banzhaf, et al., editors, Proceedings of the Genetic and Evo-
lutionary Computation Conference, Volume 2, (Morgan Kaufmann, San Francisco,
1999), 1829.



Annealing-Ligation Fidelity 245

11. C. R. Cantor, P. R. Schimmel, Biophysical Chemistry, Part III: The Behavior of
Biological Macromolecules (Freeman, New York, 1980).

12. H. T. Allawi, J. SantaLucia, Jr., “Thermodynamics and NMR of Internal GT
Mismatches in DNA”, Biochemistry 36, 10581-10594 (1997).

13. I. R. Lehman, “DNA Ligase: Structure, Mechanism, and Function”, Science, 186,
790 (1974).

14. V. Sgaramella and H. C. Khorana, “A Further Study of the T4 Ligase-catalyzed
Joining of DNA at Base-paired Ends.”, J. Mol. Biol. 72, 493 (1972).

15. N. P. Higgins and N. R. Cozzarelli, “DNA-joining Enzymes: a review.”, Methods
in Enzymology, 68 50 (1979).

16. C. Goffin, V. Bailly, W. G. Verly, “Nicks 3’ or 5’ to AP Sites or to Mispaired
Bases, and One-nucleotide Gaps can be Sealed by T4 DNA Ligase”, Nucleic Acids
Research 21, 8755 (1987).

17. K. Harada and L. E. Orgel, “Unexpected Substate Specificity of T4 DNA Ligase
Revealed by in vitro Selection”, Nucleic Acids Research 21, 2287 (1993).

18. U. Landegren, R. Kaiser, J. Sanders, L. Hood, “A Ligase-Mediated Gene Detection
Technique”, Science 241, 1077 (1988).

19. R. Wiaderdiewicz and A. Ruiz-Carrillo, “Mismatch and Blunt to Protruding-end
Joining by DNA Ligases”, Nucleic Acids Research 15, 7831 (1987).

20. D. Y. Wu and R. B. Wallace, “Specificity of the Nick-Closing Activity of Bacte-
riophage T4 DNA Ligase”, Gene 76 245 (1989).

21. S. Shuman, “Vaccinia Virus DNA Ligase: Specificity, Fidelity, and Inhibition”,
Biochemistry 34, 16138 (1995).

22. F. Barany, “Genetic Disease Detection and DNA Amplification using Cloned Ther-
mostable Ligase”, Proc. Natl. Acad. Sci. 88, 189 (1991).

23. J. Luo, D. E. Bergstrom, F. Barany, “ Improving the Fidelity of Thermus ther-
mophilus DNA Ligase”, Nucleic Acids Research 24, 3071 (1996).

24. C. E. Pritchard and E. M. Southern, “Effects of Base Mismatches on Joining of
Short Oligonucleotides by DNA Ligases”, Nucleic Acids Research 25, 3403 (1997).

25. J. N. Housby and E. M. Southern, “Fidelity of DNA Ligation: a Novel Experimental
Approach Based on the Polymerization of Libraries of Oligonucleotides”, Nucleic
Acids Research 26, 4259 (1998).

26. D. D. Lasko, A. E. Tomkinson, T. Lindahl, “Eukaryotic DNA Ligases”, Mutation
Research 236, 277 (1990).

27. A. E. Tomkinson and Z. B. Mackey, “Structure and Function of Mammalian DNA
Ligases”, Mutation Research 407, 1 (1998).

28. A. E. Tomkinson, N. J. Tappe, E. C. Friedberg, “DNA Ligase I from Saccharomyces
cerevisiae: Physical and Biochemical Characterization of the CDC9 Gene Product”,
Biochemistry 31, 11762 (1992).

29. A. S. Benight, J. M. Schurr, P. F. Flynn, B. R. Reid, D. E. Wemmer, “Melting of
a Self-Complementary DNA Minicircle”, J Mol Biol 200, 377 (1988).

30. M. Garzon, R. J. Deaton, J. A. Rose, D. R. Franceschetti, ”Soft Molecular Com-
puting”, in E. Winfree and D. Gifford, editors, ”Preliminary Proceedings of the
Fifth International Meeting on DNA Based Computers”, Massachusetts Institute
of Technology, (American Mathematical Society, Providence, Rhode Island, 1999),
89.

31. L. M. Adleman, personal communication (1999).
32. B-T Zhang, S-Y Shin, “Molecular Algorithms for Efficient and Reliable DNA Com-

puting”, Proceedings of the Third Annual Genetic Programming Conference, Uni-
versity of Wisconsin at Madison, 1998, (Morgan Kauffman, San Francisco, 1998),
735.



246 J.A. Rose and R.J. Deaton

33. A. S. Benight, R. M. Wartell, D. K. Howell, “Theory agrees with experimental
thermal denaturation of short DNA restriction fragments”, Nature 289, 203 (1981).

34. J. Zhu, R. M. Wartell, “The Effect of Base Sequence on the Stability of RNA and
DNA Single Base Bulges”, Biochemistry 38, 15986 (1999).

35. C. Longfellow, R. Kierzek, D. Turner, “Thermodynamic and Spectroscopic Study
of Bulge Loops in Oligoribonucleotides”, Biochemistry 29, 278 (1990).



DNA Implementation of a Royal Road Fitness
Evaluation

Elizabeth Goode?, David Harlan Wood??, and Junghuei Chen??

University of Delaware, Newark DE 19716, USA

Abstract. A model for DNA implementation of Royal Road evolution-
ary computations is presented. An encoding for a Royal Road problem is
presented. Experimental results utilizing 2-d denaturing gradient gel elec-
trophoresis (2-d DGGE) and polyacrylamide gel electrophoresis (PAGE)
for separation by fitness in this sample Royal Road problem are shown.
Suggestions for possible use of the MutS and MutY proteins as tools for
separation by fitness are given. Plans for future experiments and imple-
mentation are discussed.

1 Introduction

Evolution can be viewed as the dynamical change which occurs within a pop-
ulation as generations of individuals are exposed to selection criteria and then
allowed to reproduce. The forces of selection change the genotypic makeup of
the population by removing individuals which do not meet some fitness stan-
dard, while reproduction introduces change through mutation and/or genetic
recombination. The notion of evolution as a process which powers the dynamics
of a system has been applied in both computing and molecular biology. These
applications have given rise to the fields of study known as ”evolutionary com-
putation” and ”in vitro evolution.”

The scientific community has recently taken great interest in biomolecular
models of computation. In particular, Leonard Adleman’s seminal 1994 work [1]
inspired a surge of research focused on exploring the possibility of using DNA or
other biomolecules to solve mathematical problems which are computationally
hard [2,5,17,19,35]. In fact, the research community has been working to demon-
strate that it is possible to use biomolecules to perform computations which
have been previously impossible using conventional silicon computers. In light
of such developments, a DNA computation which can be performed in vitro and
for which there is no theoretical or experimental barrier to large scale implemen-
tation is clearly of interest. From the beginning of DNA based computing to the
present there have been calls [6,26,27,35] to carry out evolutionary computations
using genetic materials in the laboratory. Our model for DNA implementation
of evolutionary computations addresses these issues.
? Supported by NSF Grants No. 9805703 and No. 9980092

?? Partially supported by NSF Grant No. 9980092 and DARPA/NSF Grant
No. 9725021.

A. Condon (Ed.): DNA 2000, LNCS 2054, pp. 247–262, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



248 E. Goode, D.H. Woodet, and J. Chen

1.1 The Royal Road

The Royal Road problems are a class of evolutionary computations which were
initiated by Mitchell, Forrest and Holland [23]. Recent research of van Nimwe-
gen et.al. [28] emphasized the population dynamics of various Royal Road fitness
functions. Royal Road problems often exhibit “evolutionary stasis,” time periods
when essentially no change takes place in population fitness. Stasis is one of the
most interesting features of Royal Road because it is also frequently observed in
both natural evolution and in evolutionary computation. In fact, van Nimwegen
et.al. draw attention to Royal Road as a model of natural evolution. The theo-
retical results of van Nimwegen et.al. predict that in some situations stasis lasts
for only a relatively few generations. However, their computer simulations do
not support their theoretical results on the duration of stasis. They identify the
lack of sufficient genetic variation in their populations as the likely cause of the
observed discrepancy between theory and computation. In their computations,
genetic variation is most likely limited because most of the highly fit individuals
are presumably the descendents of a single favorably mutated individual.

Royal Road using DNA could test the theoretical predictions of stasis dura-
tion due to van Nimwegen et.al. Population genetic variation could be maintained
in DNA’s huge populations because favorable mutations would be proportion-
ately less rare. By implementing Royal Road problems using DNA, one would be
able to use populations many orders of magnitude larger than the populations
available using conventional computers. Huge DNA storage capacity permits ex-
ploring populations with much greater genetic diversity than populations avail-
able to van Nimwegen et.al. Their largest populations contained 104 individuals
using about 105 bytes. Meanwhile, one microgram of DNA (typical in experi-
ments) corresponds to more bytes of information than the 1995 production of
computer hard disks [?]. However, with our present laboratory techniques, we
would be limited to demonstrations involving very few generations. This is be-
cause each generation would take about one day in the laboratory regardless of
the populations size.

Thus, using huge populations encoded in DNA and relatively few generations,
we would be able to test precisely those theoretical predictions van Nimwegen
et.al. were not able to verify due to restricted population sizes.

The work in this paper focuses solely on fitness-based separation of individu-
als for a Royal Road problem. Fitness-based separation of individuals is a crucial
step in our DNA model for simulating Royal Road computations. The important
fact for the biomolecular computing community is that our separation technique
utilizes the separation capability of 2-d denaturing gradient gel electrophoresis
(2-d DGGE) as well as non-gradient gel electrophoresis (PAGE). We also discuss
the theoretical basis for using mismatch-binding proteins in combination with
gel shift assays for separation by fitness. We describe our progress in developing
separation techniques for our DNA implementation of evolutionary algorithms
in detail.

Populations of individuals separated by fitness via the 2-d DGGE, PAGE
and protein-DNA gel shift assays can then be further evolved by other labora-



DNA Royal Road Fitness 249

tory procedures which are available today. Presently we focus our research on
determining the feasibility of implementing the separation-by-fitness step, and
describe our experimental results. We anticipate exploring the latter steps in
our future research. We believe our DNA implementation of the Royal Road
should be of interest to both the biomolecular computing community and the
evolutionary computation community because of the potential of computing with
very large populations, and because the use of the 2-d DGGE, PAGE and other
techniques may suggest other applications or techniques hitherto unexplored.

2 Definitions and Examples

2.1 Evolutionary Algorithms

We begin with a brief overview of the general notion of an evolutionary algorithm,
and refer the reader to [4,15] for further details as required. We focus particularly
on the notion of the fitness function within an evolutionary algorithm.

An evolutionary algorithm begins with a population (possibly random) which
is subjected to iterated cycles of selection and reproduction. Selection is by some
defined fitness criteria, i.e., the fitness function. Individuals are evaluated accord-
ing to the fitness function, and sufficiently fit individuals are selected. Selected
individuals are allowed to reproduce the next generation of individuals accord-
ing to some reproduction strategy which may include mutation and crossover
(genetic recombination). Most common may be the selection and reproduction
strategies which allow reproduction as a weighted probabilistic function of the
relative fitness of each individual.

An example is the MaxOnes problem. The MaxOnes computation begins
with a random set of individual bitstrings of zeroes and ones, each of length n.
The desired outcome is a ’perfect’ individual bitstring of all ones. For a given
initial population size, the goal is to generate such perfect individuals. The fitness
function usually chosen is a simple evaluation based on the number of ones in a
given individual’s sequence.

2.2 The Royal Road Fitness Function

The Royal Road fitness function is a generalization of the MaxOnes fitness func-
tion. Rather than simple zero/one bitstrings in which the count of ones deter-
mines the fitness of the individual, the population of individuals in the Royal
Road are strings which contain discrete blocks which are subsequences of bits.
Each block is evaluated for fitness. Most usually, the requirement is that each
block consist of all ones, but other block requirements are possible.

Each block in a given individual bitstring which satisfies its predefined block
fitness criterion contributes to the fitness rating of that individual. A block in
which there are any deviations from the required specification fails to contribute
to the individual’s overall fitness. The sum of the block contributions constitutes
the total fitness for the bitstring. Most often, blocks are assigned fitness 1 if



250 E. Goode, D.H. Woodet, and J. Chen

they are perfect, and fitness 0 otherwise. Selection is a function of the fitness.
Reproduction may be according to any desired paradigm, although it is generally
independent of fitness.

2.3 DNA: Some Biochemistry

DNA, or deoxyribonucleic acid, is the gentic material of all living things. DNA
can be found in both single-stranded form (ssDNA) and double stranded form
(dsDNA) in nature, and ssDNA can be manufactured synthetically. Each DNA
single strand consists of an ordered sequence of four distinct bases: adenine,
guanine, cytosine and thymine. These bases are abbreviated as A, G, C and T,
respectively. The bases in a single strand of DNA are held togther by covalent
bonds.

DNA strands have a direction, customarily denoted as 5′ to 3′, as a con-
sequence of the way in which the bases covalently bond to one another. The
structure of dsDNA is a double helix of two single strands. Hydrogen bonds
naturally form between the paired bases A and T and between C and G. These
are called complementary bases. Two single strands having sequences of comple-
mentary bases are called complementary strands, or just complements. The two
complementary single strands of DNA in a double helix have opposite directions.

The hydrogen bonding process by which complementary single DNA strands
join together to form dsDNA is called hybridization or annealing. A double
strand of DNA can be separated into single strands by heating (melting), a
process called dehybridization. The temperature at which a double stranded
DNA dehybridizes is referred to as its melting temperature. Different sequences
of dsDNA have different melting temperatures.

It is possible for two single strands which are not perfectly complementary
to one another to bond together into a double strand, although the structure
of that strand is not always a perfect double helix. The annealed product of a
single strand of DNA with its perfect complementary strand will melt at higher
temperature than the annealed product of the same single stranded DNA with
another strand which is not its perfect complement. We shall exploit this fact
for our DNA implementation of the Royal Road problem.

3 Motivation – Why DNA on the Royal Road?

Our goal is to demonstrate experimentally that an instance of the Royal Road
problem can be implemented using DNA. We focus here on implementing the
selection step of an instance of the Royal Road problem. We have chosen to
implement the Royal Road fitness function using DNA for several compelling
reasons.

First, van NimWegen et.al. [30,29] examined the population dynamics in in-
stances of the Royal Road problem involving populations of various sizes. The
largest population size they treated was on the order of 104. In our DNA im-
plementation model we can use populations of size 1012 or larger. Our DNA



DNA Royal Road Fitness 251

computations therefore have the potential of generating previously unobtained
information about the dynamics of Royal Road computations.

Second, we chose the Royal Road problem because of the feasibility of the
necessary laboratory steps required for DNA implementation. The Royal Road
is a generalization of the MaxOnes algorithm, and Chen et.al. demonstrated the
DNA implementation of the fitness evaluation step of the MaxOnes algorithm
[9]. We attempt to apply what has been learned in the previous implementation
to a new phase of DNA implementation.

We anticipate using the tools we develop as a first step in the development
of separation tools which can be applied to sample spaces which reside in search
spaces that are of large size relative to the sample population. We also anticipate
expanding the range of population size as we develop new, possibly automated,
laboratory techniques. Because of the enormous storage capacity of DNA, the
potential gain in computing evolutionary algorithms using DNA rather than
silicon is unprecedented. We expect that results we obtain concerning the Royal
Road applied to very large populations will be of interest to the DNA computing
community as well as the evolutionary computation community.

4 The Preliminary Example for Royal Road
Fitness-Proportional Selection

Let A = {C, T, G} be our working set of symbols. The block alphabet is B =
{C, T}. The population of interest is a set of bitstrings of length 88 written over
A, each containing 2 blocks written over B of length 6 in bit positions 25-30
and 57-62. We consider individuals to be distinguishable only by the content
of their blocks. Therefore the population contains at most 212 individuals. The
Royal Road fitness function for the preliminary example assigns fitness 1 for
each perfect block containing all T s. Thus a perfect individual contains only T
in each of its blocks, and has fitness 2. An individual which has one perfect block
of all T , and one block containing at least one C is assigned fitness 1+0=1. An
individual which has at least one C in each of its blocks has fitness 0+0=0.
Individuals with high fitness are likely to be selected for reproduction.

There are a number of issues which must be treated in order to implement the
preliminary example using DNA. The individuals, once encoded in DNA, must
be physically separable by fitness. We have evidence which supports our thesis
that 2-d DGGE in combination with PAGE implements this fitness function.
We anticipate doing selection over the entire population of one generation in
one day. While the treatment of thousands of generations may not be possible
without robotics, it will, we believe, be possible to treat populations of size 1016

or greater using the laboratory techniques presently available. It is not practical
to use conventional computers for populations of this size. In the next section
we discuss the specifics of our DNA implementation design for the preliminary
example.



252 E. Goode, D.H. Woodet, and J. Chen

5 The Experimental Design

5.1 Perpendicular 2-d DGGE

The motivation of our work is to demonstrate that separation by fitness for the
preliminary example (given above) of the Royal Road fitness function can be
performed using a combination of 2-d denaturing gradient gel electrophoresis
(2-d DGGE) and polyacrylamide gel electrophoresis (PAGE). We also suggest
that mismatch-binding proteins MutS and MutY may be useful for separation
by fitness.

Denaturing gradient gel electrophoresis is a method by which single base
changes in DNA strands may be identified. This technique, first introduced by
Fischer and Lerman [12], involves exposing dsDNA to an environment contain-
ing a gradient of denaturant concentration. The dsDNA is moved through the
gradient gel environment by electrophoresis. Partial dehybridization of dsDNA
in a denaturing environment reduces the mobility of the DNA through poly-
acrylamide gel. Since melting temperatures of dsDNA are sequence specific, the
different melting temperatures of different sequences yield differences between
the movement of those sequences through a denaturing gradient gel, even if those
sequences are the same length.

We used polyacrylamide perpendicular denaturing gradient gels to perform
our selection by fitness. The perpendicular gradient gel has a chemical gradient
along its x-axis dimension, and the electric field in applied in the y-axis direction.
Samples are loaded across the x-axis, and run downward in the vertical direc-
tion, so that each vertical line of sample passes through a particular denaturing
environment for the duration of the electrophoresis. Since many vertical lines of
sample pass through the x-axis, and each vertical slice of gel has a denaturing
concentration which is slightly different than that of every other vertical slice, a
large quantity of information about the sample can be obtained during a single
electrophoretic run.

The information gathered by 2-d DGGE can then be used to determine an
optimal denaturing gradient at which separation occurs between candidates of
different fitness. Separation results are then verified with non-gradient PAGE
gels.

5.2 The Candidate Individuals

The 88-bit long individuals, or candidates of the preliminary example are en-
coded as single-stranded DNA (ssDNA) consisting of 88 bases each. Each indi-
vidual strand consists of 5 concatenated sequences of cytosine (C), guanine (G)
and thymine (T). No adenine (A) was used in the encoding of the candidates
in the population. The candidates used are all concatenates of the following
five sequences: Clamp1, Block1, Clamp2, Block2, and Clamp3. The clamps are
distinct, but constant for all candidates, and have lengths 24, 26 and 26, respec-
tively. The three clamp sequences are G-C rich regions. The blocks have length
6, and contain a mixture of C and T, varying among different candidates. Blocks



DNA Royal Road Fitness 253

contain only T and C, and perfect blocks consist of all T. The ’perfect’ candidate
therefore has only T in Block1 and Block2.

The candidate strands can theoretically be divided into equivalence classes
by fitness. Those candidates having at least one C in each of Block1 and Block2
have fitness 0. Those candidates having one perfect block containing only T, and
one imperfect block containing at least one C are assigned fitness 1. The perfect
candidate has only T in both Block1 and Block2, and is assigned fitness 2. Since
the clamps are constant for all individuals, there is only one sequence associated
with a perfect individual.

We have set out to show experimentally that we can physically divide our
candidate strands into equivalence classes. In order to achieve this separation,
we anneal the various ’imperfect’ candidates to the complement of the perfect
candidate, called the Target. The Target is a necessary element for separation
of candidate sequences by fitness. Those candidates which have fit blocks are
predicted to anneal more perfectly to the Target than those candidates which
have unfit blocks. This variation in hybridization, and the resulting variation
in melting temperatures of the annealed products, should be separable via 2-d
DGGE.

The perfect candidate strand, called Candidate Perfect, is a strand having
fitness 2, since both blocks contain only T. Candidate Perfect is the ssDNA with
the following sequence (written 5’ to 3’) in which the clamps and blocks are
separated by spaces for easy reading:
5’ -- GGGCGGCCTCGCCTCCCCTGCTGG TTTTTT CCTTCTCCCTCTGTCGGGCTCGCGTT
TTTTTT TTGTTGCTTCGTTTGTCCTTCCGTCC -- 3’

Candidate 2.1 is a candidate having fitness 1. Candidate 2.1 has a perfect
Block1 of all T’s, and Block2 contains 1 mismatch base C rather than T. The
sequence for Candidate 2.1 is given by:
5’ -- GGGCGGCCTCGCCTCCCCTGCTGG TTTTTT CCTTCTCCCTCTGTCGGGCTCGCGTT
CTTTTT TTGTTGCTTCGTTTGTCCTTCCGTCC -- 3’

Candidate 2.6 is another candidate having fitness 1. Candidate 2.6 has a
perfect Block1, and Block2 contains all C’s. Notice that Block2 of Candidate 2.6
is as mismatched from the Block2 of Candidate-Perf as is possible:
5’ -- GGGCGGCCTCGCCTCCCCTGCTGG TTTTTT CCTTCTCCCTCTGTCGGGCTCGCGTT
CCCCCC TTGTTGCTTCGTTTGTCCTTCCGTCC -- 3’

Candidate 1.6-2.6 is a candidate having fitness 0. In Candidate 1.6-2.6, both
Block1 and Block2 contain all C’s :
5’ -- GGGCGGCCTCGCCTCCCCTGCTGG CCCCCC CCTTCTCCCTCTGTCGGGCTCGCGTT
CCCCCC TTGTTGCTTCGTTTGTCCTTCCGTCC -- 3’

The Target strand, which is the exact complement of Candidate Perfect, has
the following sequence:
5’ -- CGACGGAAGGACAAACGAAGCAACAA AAAAAA AACGCGAGCCCGACAGAGGGAGAAGG
AAAAAA CCAGCAGGGGAGGCGAGGCCGCCC --3’



254 E. Goode, D.H. Woodet, and J. Chen

5.3 Separation by Fitness Using 2-d DGGE and PAGE

Separation by fitness must be demonstrable using laboratory techniques. We
show that 2-d DGGE in combination with PAGE allows separation of a subset
of our candidate strands by fitness class.

In theory, different candidate strands annealed to the Target strand should
run differently according to their fitness. Those candidates having blocks which
perfectly anneal to their corresponding complement sequences in the Target
strand are predicted to run more quickly through a gel than candidate strands
which have one or more occurrences of a C in one or both blocks. In theory,
each of the three fitness equivalence classes of candidate strands as defined by
our instance of the Royal Road fitness function should be distinguishable by 2-d
DGGE. Verification of separability is performed using the non-gradient PAGE
technique.

Experimental runs of the candidates in fitness class 1 and the perfect can-
didate having fitness 2 were performed using 2-d DGGE. Both the Candidate
2.1/Target and Candidate 2.6/Target annealed products are shown to run more
slowly through a 15% acrylamide gel (0%-60% denaturing gradient) than the
Candidate Perfect/Target annealed product. Our results using these candidates
support our thesis that these techniques can be used to implement selection by
fitness for this Royal Road fitness function.

Experimental runs of the candidates in fitness class 1 and the candiate of
fitness 0 were also performed. The Candidate 1.6-2.6/Target annealed product
is shown to run more slowly than the Candidate 2.1/Target and Candidate
2.6/Target products, as expected. Again, a 15% acrylamide gel was used, at 0%
denaturing gradient.

6 Laboratory Procedure

All candidates of fitness less than 2 and the Target ssDNA molecules were ob-
tained from Life Technologies. Candidate Perfect was generated using the poly-
merase chain reaction with the Target as the template strand. We used 20 base
long primers obtained from Geneco in a PCR reaction containing 1.5mM MgCl2
and an annealing temperature of 55◦C.

The synthetically produced oligos were purified by denaturing polyacry-
lamide gel electrophoresis, and subjected to phenol/chloroform/isoamyl alcohol
extraction, and ethanol precipitation and ethanol wash procedures. The PCR
product Candidate Perfect/Target was purified with the S-400 column from
Pharmacia.

In order that the candidate strands could be visualized, a portion of each
sample of purified oligos was radiolabeled by kinasing with P- 32. After kinas-
ing, oligos were cleaned up with G-50 columns from Pharmacia. The working
concentration of the ssDNA was on the order of 0.1 pmol/µl. The dsDNA Can-
didate Perfect/Target sample had a working concentrarion of about 0.5pmol/µl.
Samples containing approximately 1.5 pmol unlabeled Target and 0.14 pmol la-
beled Candidate 2.1, Candidate 2.6 or Candidate 1.6-2.6 were annealed in 1 x



DNA Royal Road Fitness 255

TAE and 10mM Mg++ buffer. The annealing reactions were heated to 95◦C for
10 minutes, then allowed to cool to room temperature slowly over the course
of 90 minutes. These annealed samples along with the labeled Candidate Per-
fect/Target sample were then subjected to both 2-d DGGE using the DCode
DGGE System manufactured by BioRad, and PAGE. An acrylamide/bis ratio
of 29:1 was used, with a final concentration of 15% acrylamide in the gels. In the
2-d gels, both urea and formamide were used to create the denaturing gradient,
with the highest concentration of urea and formamide being 25% and 24/100
(vol/vol), respectively. All gels were run at 350 Volts for 4 to 5 hours at approx-
imately 6.5◦C. Imaging was performed by exposing the gels for about 12 hours
in the Storage Phosphor Screen manufactured by Molecular Dynamics.

7 Results and Discussion

The fitness selection was implemented by observing the variations of movement
through the 2-d denaturing gel of the different candidates annealed with the
Target strand. It was expected that the CandidatePerfect, as an annealed prod-
uct with the Target, would run more quickly through the gradient gel than the
annealed product the Target with a candidate of fitness less than 2. This pre-
diction was based on the fact that a candidate of fitness less than 2 has some
degree of mismatch in one or both of its blocks with the corresponding comple-
mentary block portions of the Target strand. These mismatches, where C’s are
present rather than the perfect complement of all T’s, were expected to produce
an annealed product which, in some range of temperature and chemical gradi-
ent, would have fewer intact hydrogen bonds than the annealed product of the
perfect compliments Target and Candidate-Perf. In particular, we expected that
the imperfectly matched regions in the dsDNA formed by annealing the Target
to a candidate of low fitness (fitness less than a perfect 2) would dehybridize
at a lower denaturing gradient than their perfectly matched counterparts in the
Candidate Perfect/Target annealed product. It was predicted that dehybridized
sections or ’bubbles’ in the block regions of the Target annealed with candidates
of fitness less than 2 would cause these DNA molecules to move through some
gel gradient more slowly than the perfectly matched dsDNA Candidate Per-
fect/Target strands. Further, we predicted that a candidate of fitness 0 would
run more slowly than a candidate of fitness 1, and a candidate of fitness 1 would
run more slowly than the perfect candidate.

Our results demonstrate that indeed we can separate annealed products con-
taining the lower fitness candidates from the annealed product Candidate Per-
fect/Target, and that we can separate the candidate of fitness 0 from the fitness
1 candidates. On the 2-d gel the Candidate 2.6/Target product ran more slowly
than the Candidate 2.1/Target product, and the Candidate 2.1/Target product
ran more slowly than the Candidate Perf/Target product at the low denatur-
ing end of the gradient (see Figure 1). These results were then verified using
PAGE (see Figure 2). Further, with PAGE, the Candidate 1.6-2.6/Target an-



256 E. Goode, D.H. Woodet, and J. Chen

nealed product ran more slowly than any other annealed product (see Figure 3).
These results are in line with our predictions.

Fig. 1. Image of Candidate-Perf/Target, Candidate-2.1/Target and Target/Candidate
2.6 annealed reactions exposed to 2-d DGGE. The gel is 15% acrylamide/bis (29:1),
0%-60% denaturing gradient, run at 350 Volts for 4.5 hrs at 6.5◦C. Only the P-32
labeled candidate strands are visible.

Figure 1 shows the 2-d DGGE of Candidate Perfect/Target run simulta-
neously with Candidate 2.1/Target and Candidate 2.6/Target. Candidate Per-
fect/Target, Candidate 2.1 and Candidate 2.6 are radiolabeled with P-32. Can-
didate Perfect is clearly distinguishable from Candidate 2.6 in the left side of
the gel picture, as indicated by the labels in the figure. Candidate 2.1 runs just
slightly above the Candidate Perfect in this gel. The 15% acrylamide gel (0%-
60% denaturing gradient) was run at 350 Volts for 4.5 hours at 6.5◦C.

In Figure 2, the identity of all strands involved in Figure 1 were verified by
PAGE using separate lanes containing each annealed sample. As predicted, the
annealed product Candidate 2.6/Target runs most slowly, and that Candidate
2.1/Target runs between Candidate 2.6/Target and Candidate Perfect/Target.

In Figure 3, PAGE was used to demonstrate that the Candiate 1.6-2.6/Target
product runs more slowly than any of the other Candidate/Target products.
Again, a 15% acrylamide gel with 0% denaturing gradient was used.

These results encourage us to believe that our model for Royal Road imple-
mentation using blocks which melt is a good predictor of the actual behavior
of oligos designed to implement this problem. Further, we are encouraged to
believe that future experiments with other candidates will behave in a similarly
predictable manner, and that as a consequence, we shall be able to determine
experimentally how to separate all of the candidates in our sample space by
fitness equivalence class. Our results support our hypothesis that separation of
candidates by fitness will be possible.



DNA Royal Road Fitness 257

Fig. 2. Image of Candidate-Perf/Target, Candidate-2.1/Target and Target/Candidate
2.6 annealed reactions exposed to PAGE. Lane 1 containes a 25bp ladder, with bright
bands at 125bp and 50bp. Lane 2 contains Candidate Perfect/Target. Lane 3 contains
Candidate 2.1/Target. Lane 4 contains Candidate 2.6/Target. The gel is 15% acry-
lamide/bis (29:1), 0% denaturing gradient, run at 350 Volts for 4.5 hrs at 6.5◦C. Only
the P-32 labeled candidate strands are visible.

7.1 Separation by Fitness: Next Steps

The ability to separate fitness 1 candidates from the fitness 2 candidate is a
critical test for our DNA implementation of this Royal Road algorithm. We
are encouraged that we can differentiate the movement of a fitness 1 candidate
from the movement of the perfect fitness 2 candidate. Considering the somewhat
symmetric design of our oligos, we have good reason to believe that candidates
having fitness 1 by virtue of having a similar mismatch in Block1 and a perfect
sequence of T’s in Block2 should also be distinguishable from Candidate Perfect.
While we have yet to test all possible candidates of fitness 1 in comparison with
Candidate Perfect, we reason to believe that candidates having mismatches in
either Block1 and Block2 will be at least as easily distinguishable from the
Candidate Perfect as is Candidate 2.1, which has only one mismatch in one block.
Since we have results which show that separation between Candidate 2.1 and
Candidate Perfect is possible, we are encouraged to believe that the separation
of individuals having more than one mismatched base will be possible.

We also need to be able to distinguish candidates having fitness 0 from those
of fitness 1, and candidates having fitness 0 from Candidate Perfect of fitness 2.
These cases shall all be explored in future work as we continue to determine the
viability of our DNA implementation of this Royal Road fitness function.



258 E. Goode, D.H. Woodet, and J. Chen

Fig. 3. Image of Candidate-2.1/Target, Candidate 2.6/Target and Candidate 1.6-
2.6/Target annealed reactions exposed to PAGE. Lane 1 contains Candidate 2.1/Tar-
get, Lane 2 contains Candidate 2.6/Target, and Lane 3 contains Candidate 1.6-
2.6/Target. The gel is 15% acrylamide/bis (29:1), 0% denaturing gradient, run at 350
Volts for 4.5 hrs at 6.5◦C. Only the P-32 labeled candidate strands are visible.

8 Directions for Future Research

DNA implementation of a Royal Road fitness evaluation may be possible. We
are encouraged by our results to believe that our method of separation will work
for candidates in this instance of the Royal Road. Further work applied to this
Royal Road problem and other evolutionary problems is necessary. In particular,
we need to demonstrate that we can separate fitness equivalence classes for Royal
Road fitness functions in general.

In addition to using the gel electrophoresis techniques presented here, we
entertain the possibility of using mismatch-repair enzymes such as MutS and
MutY, which bind to specific mismatched base-pairs. We envision encoding our
blocks with mismatches which can be bound by these proteins, and then detected



DNA Royal Road Fitness 259

by gel shift assays. We are in the preliminary stages of testing this idea, following
the protocols found in [3], [7], [18], [21], [22], [25] and [?]. Such assays may prove
to be useful for the detection and separation of candidates having blocks which
are ’almost perfect’ - i.e. which have a single mismatch.

In later stages of our research we will implement the selection and reproduc-
tion phases of the Royal Road problem. Once candidates have been physically
separated into groups of equal fitness, many different selection criteria could be
applied. For example, fitness proportional selection might be done by cutting
samples from the various fitness classes, diluting/amplifying samples to a stan-
dard concentration, and then combining these samples in quantities proportional
to their fitnesses.

Both crossover and mutation will be incorporated in our DNA implemen-
tation of reproduction. We will take advantage of laboratory protocols which
are known to induce variable levels of mutation [11,16,20,32]. Further, DNA
implementation of crossover has been demonstrated by Chen et.al in [9]. Since
mutation is often emphasized in theoretical studies of the Royal Road prob-
lem, and crossover may be useful for certain evolutionary computations, we see
the availability of these protocols as a distinct advantage for implementing our
model.

Finally, larger Royal Road problems could be implemented using the basic
ideas presented here. Longer oligos containing block regions which are longer
could theoretically be used to encode larger problems. The same basic separa-
tion technique might be applied, as could the selection and reproduction steps
discussed above. DNA simulation of evolutionary computations involving huge
populations is, of course, the ultimate goal.

9 Conclusions

We have experimental results which are shed light on the question ”Can 2-d
DGGE and PAGE be used for separating candidates according to fitness in
a Royal Road evolutionary computation?” We are encouraged by our results
that such fitness-based separation will be possible, and that our clamp-block
style encoding of individuals is useful for DNA implmentation of a Royal Road
problem. More work needs to be done, both in verifying a complete separation
ability for the Royal Road fitness function chosen here, and in exploring the
possible uses of 2-d DGGE as the selection tool for other evolutionary algorithms
implemented with DNA. We also shall explore other tools for separation by
fitness, including mismatch-binding proteins in conjunction with gel shift assays.

If any of these tools are to be truly useful for selection in DNA evolutionary
algorithms involving huge populations, then we must demonstrate that we can
handle problems involving populations larger than that treated in this sample
problem. Refinement and expansion of our proposed techniques will be required.

In conclusion, we believe that the 2-d DGGE and PAGE separation method
will be useful for implementing fitness separation for the Royal Road problem
and for other evolutionary algorithms. We are encouraged to believe that we



260 E. Goode, D.H. Woodet, and J. Chen

may be able to treat populations which are much larger than can be treated
by conventional computers. Further research is necessary to develop a clearer
picture of how this separation method may be most useful for DNA computing.

References

1. Leonard M. Adleman, Computing with DNA, Scientific American 279 (1998), 54–
61.

2. Leonard M. Adleman, Molecular computation of solutions to combinatorial prob-
lems, Science 266 (1994), 1021–1024.

3. K. G. Au, S. Clark, J. H. Miller and P. Modrich, Escherichia coli MutY gene
encodes an adenine glycosylase active on G-A mispairs, PNAS 86 (1989), 8877–
8881.

4. Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, eds., Handbook of Evo-
lutionary Algorithms, Institute of Physics Publishing, Philadelphia, 1997.

5. Dan Boneh, Christopher Dunworth, and Richard J. Lipton, Breaking DES using a
molecular computer, Tech. Report CS-TR-489-95, Princeton University, May 1995.

6. Alan Dove, From bits to bases: Computing with DNA, Nature Biotechnology 16,
no. 9, (1998), 830–832.

7. I. Biswas and P. Hseih, Identification and Characterization of a Thermostable
MutS Homolog from Thermus aquaticus, The Journal of Biological Chemistry 271,
(1996), no. 9, 5040–5048.

8. J. Chen, E. Antipov, B. Lemieux, W. Cedeno, and D.H. Wood, DNA Computing
implementing genetic algorithms, Preliminary Proceedings DIMACS Workshop on
Evolution as Computation, (L. Landweber, R. Lipton, E. Winfree and S. Freeman,
eds), DIMACS, Piscataway, NJ, 1999, 39–49.

9. David Harlan Wood, Junghuei Chen, Eugene Antipov, Bertrand Lemieux, and
Walter Cedeño, In vitro selection for a OneMax DNA evolutionary computation,
DNA Based Computers V: DIMACS Workshop, DIMACS series in discrete math-
ematics and theoretical computer science, June 14-15, 1999, (David Gifford and
Erik Winfree, eds.), American Mathematical Society, Providence, to appear.

10. A. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and
K. Struhl, Current Protocals in Molecular Biology, Greene Publishing Associates
and Wiley-Interscience, 1994.

11. J. C. Cox, P. Rudolph, and A. D. Ellington, Automated RNA selection, Biotech-
nology Progress 14 (1998), no. 6, 845–850.

12. S. Fischer and L. Lerman, Proceedings of the National Academy of Science 80
(1983), 1579–1583.

13. Philippe Gigure and David E. Goldberg, Population sizing for optimum sampling
with genetic algorithms: A case study of the Onemax problem, Genetic Program-
ming 1998: Proceedings of the Third Annual Conference at Madison, WI, (John R.
Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo,
David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick Ri-
olo, eds), Morgan Kaufman, San Francisco, 1998, 22–25.

14. Searching for gene defects by denaturing gradient gel electrophoresis, Trends in
Biochemical Sciences 172 (1992), no. 3, 89–93.

15. Jörg Heitkötter and David Beasley, The hitch-hiker’s guide to evolutionary com-
putation, (FAQ for comp.ai.genetic). Web page at
http://alife.santafe.edu/ joke/encore/www/, September 1999.



DNA Royal Road Fitness 261

16. A. A. Beaudry and Gerald E. Joyce, Directed evolution of an RNA enzyme, Science
257 (1992), 635–641.

17. Lila Kari, DNA computing: Arrival of biological mathematics, Math. Intelligencer
19 (1997), no. 2, 9–22.

18. Xianghong Li, Patrick M. Wright and A-Lien Lu, The C-terminal Domain of MutY
Glycosylase Determines the 7,8-Dihydro-8-oxo-guanine Specificity and Is Crucial
for Mutation Avoidance, The Journal of Biological Chemistry 275 (2000), no. 12,
8448–8455

19. Richard J. Lipton, DNA solution of hard computational problems, Science 268
(1995), 542–545.

20. J. R. Lorsch and J. W. Szostak, In vitro evolution of new ribozymes with polynu-
cleotide kinase activity, Nature 371 (1993),31—36.

21. A Novel Nucleotide Excision Repair for the Conversion of an A/G Mismatch to
C/G Base Pair in E. coli, Cell 54 (1988), 805–812.

22. A-Lien Lu and Ih-Chang Hsu, Detection of Single DNA Base Mutations with Mis-
match Repair Enzymes, Genomics 14 (1992), 249–255.

23. Melanie Mitchell, Stephanie Forrest, and John Holland, The royal road for genetic
algorithms: Fitness landscapes and GA performance, Proceedings of the First Eu-
ropean Conference on Artificial Life, MIT Press/Bradford Books, Cambridge, MA,
1992.

24. Melanie Mitchell, An Introduction to Genetic Algorithms,MIT Press, Cambridge,
MA,1998.

25. Paul Modrich, Mechanisms and Biological Effects of Mismatch Repair, Annu. Rev.
Genet. 25 (1991), 229–253.

26. H. Muir, DNA reveals its talent for computing, New Scientist 144 (1994).
27. Robert Pool, Forget silicon, try DNA, New Scientist 151 (1996) no. 2038, 26–31.
28. Erik van Nimwegen, James P. Crutchfield and Melanie Mitchell, Statistical Dynam-

ics of the Royal Road Genetic Algorithm, Theoretical Computer Science, special
issue on Evolutionary Computation, to appear (1998).

29. James P. Crutchfield and Erik van Nimwegen, Optimizing epochal evolutionary
search: Population-size independent theory, SFI Working Paper 98-06-046, 1998,
18 pages. Paper found at URL:
http://www.santafe.edu/projects/evca/evabstracts.html#oeespsit.

30. James P. Crutchfield and Erik van Nimwegen, Optimizing epochal evolutionary
search: Population-size dependent theory, SFI Working Paper 98-10-090, 1998, 18
pages. Paper found at URL:
http://www.santafe.edu/projects/evca/evabstracts.html#oeespsdt.

31. James P. Crutchfield and Erik van Nimwegen. The evolutionary unfolding of com-
plexity. In Laura Landweber, Erik Winfree, Richard Lipton, and Stephan Freeland,
editors, Proceedings of the DIMACS Workshop on Evolution as Computation, New
York, 1999, to appear. Springer-Verlag.

32. M. Sassanfar and J. W. Szostak, An RNA motif that binds ATP, Nature 364
(1993),550—553.

33. Gerhard Steger, Thermal denaturation of double-stranded nucleic acids: Predic-
tion of termperatures critical for gradient gel electrophoresis and polymerase chain
reaction, Nucleic Acids Research 22 (1994), no. 14, 2760–2768.

34. Willem P.C. Stemmer, DNA shuffling by random fragmentation and reassembly: In
vitro recombination for molecular evolution, Proceedings of the National Academy
of Science, U.S.A. 91 (1994), 389–391.

35. Willem P.C. Stemmer, The evolution of molecular computation, Science 270 (1995),
1510–1510.



262 E. Goode, D.H. Woodet, and J. Chen

36. Willem P.C. Stemmer, Sexual PCR and Assembly PCR,The Encyclopedia of Molec-
ular Biology and Molecular Medicine, (Robert Meyers, ed), VCH, New York, 1996,
447–457.

37. D.H. Wood, J. Chen, E. Antipov, W. Cedeno, and B. Lemieux, A DNA imple-
mentation of the Max 1s problem, GECCO-99: Proceedings of the Genetic and
Evolutionary Computation Conference, July 1999, Orlando, Florida, (W. Banzhaf,
A.E. Eiben, M. Garzon, V. Honavar, M. Jakiela, and R.E. Smith, eds), Morgan
Kaufman, San Francisco, 1999, 1835–1842.



A. Condon (Ed.): DNA 2000, LNCS 2054, pp. 263–270, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Steady Flow Micro-Reactor Module for Pipelined DNA
Computations

John S. McCaskill, Robert Penchovsky, Marlies Gohlke, Jörg Ackermann, and
Thomas Rücker

GMD-National Research Center for Information Technology
Schloß Birlinghoven, St. Augustin 53754, Germany

Email: mccaskill@gmd.de

Abstract. Microflow reactors provide a means of implementing DNA Com-
puting as a whole, not just individual steps. Contrary to surface based DNA
Chips[1], microflow reactors with active components in closed flow systems
can be used to integrate complete DNA computations[2]. Microreactors allow
complicated flow topologies to be realized which can implement a dataflow-
like architecture for the processing of DNA. A technologically feasible scalable
approach with many reaction chambers however requires constant hydro-
dynamic flows. In this work, the experimental construction of a basic constant
flow module for DNA processing in such a context is addressed. Limited
diffusional exchange in parallel flows is used to establish spatio-temporal segre-
gation of reaction conditions which can be crossed by magnetic beads without
barriers. As previously outlined[2], linked up with an optical programming
technology, this will enable DNA selection to be programmed and complex
population selection to be performed. The basic first experimental step in the
realization of this program is described here: the establishment of a stable
hydrodynamic flow pattern which is scalable to many reactors in parallel and
the demonstration of a scalable and synchronous clocking of magnetic bead-
based processing. First results with fluorescently-labeled DNA transfer will also
be presented at the conference. The way in which this module may be inte-
grated to solve the maximal clique problem has been proposed elsewhere[2].

1. Introduction
Integrating DNA computing to the point where complex computations can be
performed routinely is a major conceptual and technological challenge. Whereas early
experiments with DNA processing involved manual processing steps[3], the
scalability of DNA computing to significant problem sizes requires new progress in
biotechnological integration. Suitably matched architectures for DNA processing
must be developed which take advantage of the integration potential of such
technology. Two major trends in such Integration may be discerned: DNA Chip
technology (as in [1]) on the one hand and microflow systems (as employed in
mTAS[4]) involving fluid flow in sealed channel networks on the other. In previous
work[5], we have described the application of microflow reactors to spatially
structured molecular evolution experiments with DNA and RNA. Completely passive
flow systems find application in  maintaining the long-term evolution of isothermal
amplification systems in 0-, 1- and 2-dimensions6.  Self-assembling rotors made from



264         J.S. McCaskill et al.

magnetic beads may be employed to actively mix solutions in the well-mixed (0-
dimensional) case[7]. The scale of practical active valves and mixing modules in
microsystems is usually in the range of several hundred micrometers, and there is a
problem in integrating the separate control of these elements. There is a need for
simple active DNA processing elements with common synchronous control.

Recently, a concept for such an application of steady flow microflow reactors to DNA
Computing has been proposed[2]. This differs from the general alternative proposal
for using microflow reactors to enhance the scalability of DNA strand routing[8]. It is
based on practical experience with large microflow reactor networks, rather than their
ideal  behavior.  A single  type of active  module, the strand transfer module, was pro-

Fig. 1. Alternating states of strand transfer module as proposed in [2]. Selected (red) and non-
selected (black) DNA flow in the left solution past beads (only one shown) in a hybridizing
buffer. Non binding DNA leaves through the left channel. Upon bead transfer (right hand
diagram), bound DNA dissociates from the bead in the non-hybridizing buffer and leaves
through the right hand channel before being neutralized (below) for further processing.

posed to implement a hybridization based strand separation step in DNA computing
and a scheme for optically programming a network of such modules via
photochemistry was introduced. Experimental progress with the development of an
optical programming technology for  such modules will be reported elsewhere.

The basic function of the module can be seen from Figure 1. Selected DNA strands
are to be transferred from one channel to another using two different buffer solutions
(e.g. at different pH) and magnetic beads with attached oligonucleotides. Matching
DNA templates bind to the beads on the left in continuous flow and are transferred to

OH-

B

W

X1

  Ti

Ti+1

OH-

B

W

X1

B      Buffer
OH-   NaOH Soln
T      DNA
W     Waste

Bead
Barrier

Interlayer
Contact

Magnetic
Bead

2nd Layer



Steady Flow Micro-Reactor Module for Pipelined DNA Computations         265

the right solution by a magnet which synchronously clocks all module chambers. The
release of DNA into the second solution can be achieved by denaturants such as
formamide or NaOH. Mixing of the two solutions is limited by the laminar flow.
DNA is released in the denaturing solution on the right and leaves via the right hand
channel, being neutralized before delivery to a downstream module.

The realization and coupling of such modules presents a number of practical
difficulties. In general, connecting many modules with alternating buffer solutions
requires channel crossings. The beads must be restrained physically, since a single
magnetic control of the entire array is required for good scalability. (The alternative
of using inhomogeneous magnetic fields to trap beads at specific locations as
employed in  is not clearly scalable.) Furthermore, the hydrodynamic flows must be
setup to preserve the fluid-fluid boundary in each module. The remainder of this
paper is structured as follows. In section 2, we present two microreactor designs and
their construction for the strand transfer module.
The second design proved advantageous for the hydrodynamic stability as
investigated in section 3, by fluorescent labeling, and should prove useful in
improving specificity of strand transfer. The behavior of magnetic beads in the
microflow reactors under laminar flow is described in section 4. The paper concludes
with a brief discussion of the results and implications for the strand transfer module.
Further results with fluorescently labeled DNA binding and strand transfer should be
available at the conference.

2. Reactor Design and Construction
The design implementation of the basic module involved the electronic specification
of four  photomasks (designed via Mentor Graphics Boardstation Software and
produced by ) which were then transferred to 100 Si wafers (400µm thick) via a twin
depth etching and double sided structuring of the wafers using TMH and KOH (cf
[6]). Channel widths varied between 50 and 200µm and depths of 50-100µm were
employed. At certain locations, the structures were etched right through to make
connections for channel crossovers on the reverse side. Planar barriers of only 10µm
depth were employed to restrain the passage of 15-30µm diameter beads and no
problem with blocking in filtered buffer solutions were observed. After
microstructuring, the Si wafer was anodically bonded to two 500µ thick pyrex
(borosilicate) wafers with thermal expansion coefficients matched to Si.
Ultrasonically drilled holes in these pyrex wafers allowed the connection of capillary
tubing using UV-hardening glues as described previously, to connect the channels of
the microreactor with external fluids.

An initial design of the microreactor, as shown schematically in figure 1, suffered
from insufficient hydrodynamic stability (see section 3) and so a further design
iteration was performed in which a central channel (washing channel) for a neutral
buffer solution was introduced. Because scalability of the reactor module was a key
issue, we included some coupled modules already in this initial design phase. The
mask overlay design of five single and coupled modules is shown in Figure 2.



266         J.S. McCaskill et al.

Fig. 2. Mask overly design for five microflow reactors on a single Si wafer. At the bottom left
is an inset showing the detail of the bead barrier. Flow is from top to bottom, and the bead
barrier is shown in purple. Microfluidic inputs are in the top row and outputs in the bottom row
(3.5mm spacing). Some horizontal channels are on the reverse side of the wafer to avoid
contact at channel crossovers.
Reactors 1 and II differ in the width of the bead transfer module. Reactors III contains two
parallel strand transfer modules and reactor IV contains two serial transfer modules. Reactor V
has a combination of two parallel and two serial modules.

A photograph of a section of the completed reactor is shown in figure 3. The channel
connections on the reverse side of the reactor are not visible. The bead barriers are too
fine (25µm) and shallow (10µm) to be visible. The connection technology is clearly
visible with 400µm diameter polyethylene capillary tubing. The structures are
significantly larger than is necessary for operation, reflecting the early stage of the
development.



Steady Flow Micro-Reactor Module for Pipelined DNA Computations         267

Fig. 3. Image of part of 5 microflow reactor wafer, as specified by the masks of fig. 2.
The connections to capillary tubing is shown above. The spacing between tubes is 3.5mm. A
plexiglas stabilizer is glued with a UV-hardening glue to the outer glass wafer after
polyethylene capillaries are inserted through drilled holes in the plexiglas (800µm) above the
holes in the pyrex (300µ ultrasound drilled).
On the right are markers for mask alignment. The top of the rightmost microreactor V and part
of IV are shown. The darker bars above and below the bead barriers (central) involve etching
through to channels on the reverse side of the Si wafer (not shown). The back side is also sealed
by a pyrex wafer, this time without connections to external tubing.

3. Hydrodynamic Test of Reactor
Fluorescent dyes provide a convenient method of distinguishing between two
different solutions in microreactors. In order to test the hydrodynamics stability of the
flow in the reactor we have pumped  a rhodamine 6G solution by a precision  syringe
pump  at different flow rates via the right channel. In the left picture one can see the
diffusion of the rhodamine 6G solution when the pumping speed is zero. In the right
hand picture the pumping speed is 4 µl/min. As one can see on fig. 4, there is a clear
separation between the flow into a right channel and the flow into the left channel. A
small amount of dye is divided in the central channel (introduced for washing and
stability). This stable flow can be achieved by simultaneously pumping both solutions
at equal rates (by volume), and does not require an individual regulation. This is



268

imp
(II i

Fig
top 
of s

4. 
In a
tran
betw
of 
inje
des
indi
para
was
         J.S. McCaskill et al.

ortant for the integration to multiple modules. 
n fig. 2) showed similar results (data not show

. 4. Fluorescence image of flow in strand transf
and the dye enters on the right channel. Left im
olutions. Right image: finite flow rate (see text

Active Switching of Magnetic Beads
ddition to the hydrodynamic stability of the d
sfer module has to allow the reliable restrain
een the two solutions. We incorporated latex 

30µm (obtained from Micromod Ltd) into 
cted using a syringe pump (as for fluid pum
ired microreactor by the bead barrier (a ledg
vidual module manipulation of beads, the bea
llel processing of beads in multiple modules
 also successful in the presence of channel cros
A test of the parallel reactor module
n).

er module. Flow is from bottom to
age: zero flow rate, no separation

), no dye in left channel.

ifferent buffer solutions, the strand
t and switching of magnetic beads
paramagnetic beads with a diameter
the microreactor. The beads were
ping above), and restrained to the

e 10µm in depth). In contrast with
d restraint is designed to allow the

 in the microreactor. Bead delivery
sovers.



Steady Flow Micro-Reactor Module for Pipelined DNA Computations         269

he switching behavior of the beads is show  in Fig. 5. A strong  magnetic field
gradient was employed (SrCo, Maurer Ma
employed. This was particularly important fo
this experiment, the original microreactor desi
input for stability was employed. Similar 
microreactor design (see section 2).

Fig. 5. Switching of magnetic beads between two b
is from the right and the bead barrier is on the left o
the situation with the magnet below, the right ha
Single beads may be discerned. Under-etching o
anisotropic etch method can be seen. This assists the

Magnetic beads as small as 8µm can be used w
this size, clogging of the barriers becomes a sig

5. Conclusion
The above results demonstrate the first step in
transfer modules for DNA Computing. Attenti
of the concept, and the design is based on p
design. It should be possible to integrate thou
wafer. A concept for DNA Computing based
previously. While the authors are aware of
separation of DNA, the microflow reactor fram
kinetic control which may prove beneficial he
been presented recently9. The next stage of
bound to beads and selective transfer should be
n
T

gnetic, Grüningen, Switzerland) was
r smaller beads (data not shown).  For
gn, with 200µm channels and no third
behavior is recorded in the revised

uffer solutions in microflow  module. Flow
f each picture. The left hand picture shows

nd image the same for the magnet above.
f the silicon channel structures with the
 mobility of the beads.

ith bead barriers down to 5µm. Below
nificant problem.

 the experimental realization of strand
on has been paid to the true scalability
ractical experience with microreactor
sands of such modules on a single Si

 on such a module has been proposed
 concerns over errors in bead based
ework provides many opportunities for
re. Initial results in this direction have
 experimental results involving DNA
 evaluated at the conference.



270         J.S. McCaskill et al.

Acknowledgements. This work would not have been possible without the Herculean
effort of B. Streeck and his team at the GMD in constructing the new clean room
facilities there.  The authors also wish to thank R. Fuchslin for his assistance in
selecting suitable magnets.

References
                                                          
1 Liu, Q., Wang, L., Frutos, A.G., Condon, A.E., Corn, R.M. and Smith, L.M.(2000) Nature

403 175-9.
2 McCaskill, J.S. (2000) Optically programmable DNA Computing in microflow reactors.

Biosystems in press.
3 Adleman, L.M. (1994) Molecular computation of solutions to combinatorial problems.

Science 266 1021-1024.
4 Weigl, B.H. and Yager, P. (1999) Microfluidic diffusion-based separation and detection.

Science 283 346-7.
5 McCaskill J.S. (1997) Spatially resolved in vitro molecular ecology. Biophys. Chem. 66

145-158.
6 Schmidt, K., Foerster, P., Bochmann, A. and McCaskill, J.S. (1997) A microflow reactor

for two dimensional investigations of in vitro amplification systems.  In 1st Int. Conf.
Microreaction Tech. (Dechema e.V. Frankfurt).

7 Schmidt, K. and McCaskill, J.S. (1998) "Schaltbarer dynamischer Mikromischer mit
minimalen Totvolumen" PCT/EP98/03942 .

8 Gehani. A. and Reif, J. (1999) "Micro flow bio-molecular computation" Biosystems 52
197-216.

9 Fan, Z.H., Mangru, S., Granzow, R., Heaney, P., Ho, W., Dong, Q. and Kumar, R. (1999)
Dynamic DNA hybridization on a chip using paramagnetic beads. Anal. Chem. 71 4851-
4859.



Author Index

Ackermann, Jörg 263
Adleman, Leonard M. 27
Arita, Masanori 17

Bonizzoni, Paola 117
Braich, Ravinderjit S. 27

Chelyapov, Nickolas 27
Chen, Junghuei 247
Chen, Kevin 199

De Felice, Clelia 117
Deaton, Russell J. 231
Dı́az, Sergio 209

Eng, Tony 63
Esteban, Juan Luis 209

Freund, Franziska 130
Freund, Rudolf 130
Frisco, Pierluigi 43

Gohlke, Marlies 263
Goode, Elizabeth 247
Gouzu, Hidetaka 17

Hagiya, Masami 17, 89
Hwang, Darryl 27

Johnson, Cliff 27

Knight, Jr., Thomas F. 1
Komiya, Ken 17

LaBean, Thomas H. 145, 173

Margenstern, Maurice 53
Mauri, Giancarlo 117
McCaskill, John S. 103, 263

Niemann, Ulrich 103
Nishikawa, Akio 17

Ogihara, Mitsunori 209

Penchovsky, Robert 263

Ramachandran, Vijay 199
Reif, John H. 147, 173
Rogozhin, Yurii 53
Rose, John A. 231
Rothemund, Paul W.K. 27
Rozenberg, Grzegorz 63
Rücker, Thomas 263

Sakakibara, Yasubumi 220
Sakamoto, Kensaku 17
Seeman, Nadrian C. 173

Weiss, Ron 1
Winfree, Erik 63
Wood, David Harlan 247

Yokoyama, Shigeyuki 17

Zizza, Rosalba 117


	DNA Computing
	Preface
	Organization
	Table of Contents
	Engineered Communications for Microbial Robotics
	Introduction
	Quorum Sensing in Bacteria
	Genetic Features of the LuxR/LuxI Operons
	Engineered Plasmid Constructs
	Preliminary Plasmids
	Senders
	Receivers

	Intercellular Signalling Experiments
	Sending a Constant Cell to Cell Signal
	Autoinducer Extraction and Characterization of the Receiver Module
	Sending Controlled Cell to Cell Signals

	Conclusions
	Extraction and Analysis of the Lux Operon Structure from Natural Constructs
	References

	Successive State Transitions with I/O Interface by Molecules
	Introduction
	Experiments
	Materials and Methods
	Results

	Discussion
	Benefits from I/O Interface
	Reaction on Solid Phase
	Sequence Design
	Increasing the Number of Tranistion Steps
	References


	Solution of a Satisfiability Problem on a Gel-Based DNA Computer
	Introduction
	Materials and Methods
	Design of the Library
	Synthesis of the Library and Probes
	Library Capture Analysis
	Confirming Integrity of the Library via PCR
	The Algorithm
	Construction and Running of the Computer
	Computation
	Determination of Answer Strand

	Results
	Library Capture Analysis
	Confirming the Integrity of the Library via PCR
	Readout of the Answer Strands by PCR
	Sequencing of the Answer Strands

	Prospects for Scaling up
	Discussion
	References

	Diophantine Equations and Splicing: A New Demonstration of the Generative Capability of H Systems
	Introduction
	An Overview on Diophantine Equations
	An Overview on Splicing
	Solver
	Final Remarks
	References

	About Time-Varying Distributed H Systems 
	Introduction
	Basic Definitions
	TVDH Systems of Degree 3
	Modified Definition of TVDH Systems -- Extended TVDH Systems
	References

	String Tile Models for DNA Computing by Self-Assembly
	Introduction
	DNA Self-Assembly and Formal Language Theory
	Motivating Examples
	A Non-context-free Language
	Parallel Tiles That Generate an Addition Table
	Hairpin Tiles for CNF-SAT
	Permutation Tiles for DHPP

	Constructibility of String Tiles
	Classes of String Tiles
	Criteria for Constructibility; Prototiles
	Constructions

	Generative Power of String Tiles
	Preliminaries
	String Tiles
	Classes of Tiles
	Assemblies and Languages
	Scattered Linear Grammars for Parallel String Tiles
	Parallel Normal Form for Permutation Tiles
	Hairpin Normal Form for General Tiles

	Conclusions and Open Questions
	References

	From Molecular Computing to Molecular Programming
	Introduction
	Improvements of the Adleman-Lipton Paradigm
	Autonomous Molecular Computing
	Winfree's DNA Tiles
	SAT Engine
	Whiplash PCR

	New Computational Paradigms
	Computing Inside a Single Molecule
	Computing by Interactions among Molecules
	Computing with Membranes
	Computing with Geometry

	Molecular Programming
	References

	Graph Replacement Chemistry for DNA Processing
	Graph Replacement Chemistry for DNA Processing
	1.   Introduction
	2.   Molecular Graphs
	3.   Graph Replacement Systems
	4. Molecular Graph Reactions
	5.   Molgraph: The Program and IO
	6. Coupled Isothermal Amplification
	7.   Outlook
	References

	DNA and Circular Splicing
	Introduction
	Languages and Splicing: Definitions
	Linear Splicing
	Circular Languages
	Circular Splicing
	On the Generating Power of Circular Splicing Systems

	Regular CPA Generated Languages and Star Languages
	Conclusions and Future Work
	References

	Molecular Computing with Generalized Homogeneous P-Systems
	Introduction
	Preliminary Definitions
	Generalized Homogeneous P-Systems (GhP-Systems)
	The Computational Power of GhP-Systems of Type H and CR
	Conclusion
	References

	Computationally Inspired Biotechnologies: Improved DNA Synthesis and Associative Search Using Error-Correcting Codes and Vector-Quantization
	Introduction
	Recombinant DNA Technology
	Computationally Inspired Biotechnologies
	Applications to Biomolecular Computing
	Organization of This Paper

	Error-Correction Methods from CS Adapted to Biotechnology
	Known Error-Correction Methods
	Applying Error-Correction Methods to Biotechnology
	Synthesizing the EC Strands

	Adapting to Biotechnology VQ Methods Used in Computer Science
	VQ Coding Methods Used in Computer Science
	Applying VQ Coding Methods to Increase DNA Chip I/O

	Application to Associative Search
	Definition of Associative Search
	DNA Annealing as an Associative Search Engine
	Major Challenges Remaining
	Applying VQ Coding Methods to Associative Search: Refining the Associative Search to Exact Matches

	Extension of Associative Search to Include Boolean Conditionals
	Conclusion
	References

	Challenges and Applications for Self-Assembled DNA Nanostructures
	Introduction to Tiling Self-Assemblies
	Self-Assembly
	Domino Tiling Problems
	Self-Assembly of Tiling Lattices
	Goals and Organization of This Paper

	 DNA Self-Assembly of DNA Tilings
	DNA as a Construction Material
	DNA Tiles Constructed from DX and TX Complexes
	DNA Tiling Lattices
	Two Dimensional DNA Tiling Assemblies
	Three Dimensional DNA Tiling Assemblies

	Applications of Non-computational DNA Tiling Arrays 
	Application to Layout of Molecular-Scale Circuit Components
	Application to Surface Chemistry and Impact on Biotechnology
	Tiling Assemblies with Molecular Motors

	 Computation by Self-Assembled Tilings
	DNA Computation
	Computation by DNA Self-Assembly
	Massively Parallel Computation by Tiling
	The Speed of Computing via DNA Tiling Assemblies
	String-Tiles: A Mechanism for Small-Depth Tiling
	Input/Output to Tiling Assemblies Using Scaffold and Reporter Strands
	One Dimensional DNA Tiling Computations or Parallel Arithmetic
	Two Dimensional DNA Tiling Computations
	Three Dimensional DNA Tiling Computations
	Recycling of the Component ssDNA
	Arrays of Finite State Machines

	The Kinetics and Error Control in Self-Assembled Tiling Assemblies
	Kinetics of Self-Assembled Tiling Assemblies
	Error Control in Self-Assembled Tiling Assemblies

	Conclusion
	References

	A Space-Efficient Randomized DNA Algorithm for k-SAT
	Introduction
	Classical textsf {SAT} Algorithms
	DNA textsf {SAT} Algorithms

	Model of Computation
	Form of DNA Molecules
	Operations

	Algorithm
	Notation and Definitions
	The Algorithm textsf {Search}
	Overview of DNA Implementation
	Appending Truth Value Assignments
	The Algorithm textsf {DNASearch}
	Analysis of textsf {DNASearch}

	Discussion
	References

	A DNA-Based Random Walk Method for Solving k-SAT
	Introduction
	DNA-Implementation of {{Sch{accent 127 o}ning}}'s Algorithm
	The Computation Model
	{Sch{accent 127 o}ning}'s Algorithm
	Concurrent Version of {Sch{accent 127 o}ning}'s Algorithm
	Encoding Scheme
	Implementing Step 1: Generation of the Initial Search Space
	Implementing Step 2a: Testing the Existence of Satisfying Assignment in the Pool
	Implementing Step 2b: Executing Concurrent Random Walk
	Running Time Analysis

	DNA-Implementation of Resolution
	Resolution
	Implementation of Concurrent Resolution on a Variable
	Selecting Any Variable
	Performing a Resolution Steps in Parallel
	General Resolution

	Conclusion
	References

	Solving Computational Learning Problems ofBoolean Formulae on DNA Computers
	Introduction
	Computational Learning of Boolean Formulae
	Learning Algorithms on DNA Computers
	Algorithm to Evaluate $k$-Term DNF Formulae
	Implementing the Evaluation Algorithm on DNA Computer
	The Consistent Learning Algorithm on DNA Computer
	DNF Formulae Are Efficiently Learnable on DNA Computer

	Parallel and Probabilistic Computational Aspects
	Conclusions
	References

	The Fidelity of Annealing-Ligation: ATheoretical Analysis
	Introduction
	The Computational Incoherence, $xi $
	The Fidelity of DNA Ligases
	Bounding The Fidelity of Annealing-Ligation
	Results
	Discussion
	Conclusion and Further Work
	References

	DNA Implementation of a Royal Road Fitness Evaluation
	Introduction
	The Royal Road

	Definitions and Examples
	Evolutionary Algorithms
	The Royal Road Fitness Function
	DNA: Some Biochemistry

	Motivation - Why DNA On the Royal Road?
	The Preliminary Example for Royal Road Fitness-Proportional Selection
	The Experimental Design
	Perpendicular 2-d DGGE
	The Candidate Individuals
	Separation by Fitness Using 2-d DGGE and PAGE

	Laboratory Procedure
	Results and Discussion
	Separation by Fitness: Next Steps

	Directions for Future Research
	Conclusions
	References

	Steady Flow Micro-Reactor Module for Pipelined DNA Computations
	Introduction
	Reactor Design and Construction
	Hydrodynamic Test of Reactor
	Active Switching of Magnetic Beads
	Conclusion
	References



	Author Index



