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Regulation of noise in the expression of a single gene
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Stochastic mechanisms are ubiquitous in biological systems.
Biochemical reactions that involve small numbers of mole-
cules are intrinsically noisy, being dominated by large concen-
tration fluctuations1–3. This intrinsic noise has been
implicated in the random lysis/lysogeny decision of bacterio-
phage-λ4, in the loss of synchrony of circadian clocks5,6 and in
the decrease of precision of cell signals7. We sought to quanti-
tatively investigate the extent to which the occurrence of
molecular fluctuations within single cells (biochemical noise)
could explain the variation of gene expression levels between
cells in a genetically identical population (phenotypic noise).
We have isolated the biochemical contribution to phenotypic
noise from that of other noise sources by carrying out a series
of differential measurements. We varied independently the
rates of transcription and translation of a single fluorescent
reporter gene in the chromosome of Bacillus subtilis, and we
quantitatively measured the resulting changes in the pheno-
typic noise characteristics. We report that of these two para-
meters, increased translational efficiency is the predominant
source of increased phenotypic noise. This effect is consistent
with a stochastic model of gene expression in which proteins
are produced in random and sharp bursts. Our results thus
provide the first direct experimental evidence of the biochem-
ical origin of phenotypic noise, demonstrating that the level
of phenotypic variation in an isogenic population can be regu-
lated by genetic parameters.
We selected as our reporter system a single-copy chromosomal
gene with an inducible promoter. As an estimated 50–80% of
bacterial genes are transcriptionally regulated8, this system typi-
fies the majority of naturally occurring genes, allowing our
results to be extended to natural systems. We incorporated a sin-
gle copy of our reporter, the green fluorescent protein gene (gfp),
into the chromosome of B. subtilis. We chose to integrate gfp into
the chromosome itself, rather than in the form of plasmids, as
variation in plasmid copy number9,10 can act as an additional
and unwanted source of noise. Transcriptional efficiency was
regulated by using an isopropyl-β-D-thiogalactopyranoside
(IPTG)–inducible promoter, Pspac, upstream of gfp, and varying
the concentration of IPTG in the growth medium. Translational

efficiency was regulated by constructing a series of B. subtilis
strains (Table 1) that contained point mutations in the ribosome
binding site (RBS) and initiation codon of gfp11. The use of two
different strategies to regulate transcriptional and translational
processes introduces a potential bias in the relative contributions
of these processes to biochemical noise. As a control, we con-
structed four additional strains (Table 2) whose transcription
rates were altered by mutations in the promoter region of the
reporter gene. As described below, both strategies of transcrip-
tional regulation produced similar results.

We measured expression of green fluorescent protein (GFP)
for single cells in a bacterial population using flow cytometry.
Variation in GFP expression from cell to cell (phenotypic noise)
is seen in a histogram (Fig. 1a) showing the protein expression
levels (p) measured during a typical experiment. The histogram
is characterized by a mean value 〈p〉 and a standard deviation σp.
The phenotypic noise strength, defined as the quantity σp

2/〈p〉
(variance/mean), is sensitive to the biochemical sources of sto-
chasticity that we wished to study and is therefore the unit in
which we report our results. We measured phenotypic noise
strength for the four different translational strains as we varied
IPTG concentration between 30 µM (near-basal transcription)
and 1 mM (full operon induction). For example, Fig. 1b shows
flow cytometer results for the four strains at full induction,
whereas Fig. 1c shows the results from a series of flow cytometer
experiments conducted on a single strain (ERT3) as IPTG con-
centration was varied. A summary of all of our experimental
results (Fig. 2a) shows the measured noise strength as a simulta-
neous function of both transcriptional efficiency (varying
[IPTG] in the growth medium) and translational efficiency
(using different strains with mutations in the RBS and initiation
codon). As the addition of IPTG and mutations in the gfp RBS
are not expected to affect normal cellular processes, all contribu-
tions to phenotypic noise remained unchanged throughout our
experiment, except fluctuations in rates of transcription and
translation. The response of phenotypic noise strength to a
change in either translational efficiency (Fig. 2b) or transcrip-
tional efficiency (Fig. 2c) indicates the isolated contribution of
that parameter to the phenotypic noise.

Published online: 22 April 2002, DOI: 10.1038/ng869

Table 1 • Translational mutants: point mutations in the RBS
and initiation codon of gfp

Strain Ribosome binding site Initiation Translational 
codon efficiency

ERT25 GGG AAA AGG AGG TGA ACT ACT ATG 1.00
ERT27 GGG AAA AGG AGG TGA ACT ACT TTG 0.87
ERT3 GGG AAA AGG TGG TGA ACT ACT ATG 0.84
ERT29 GGG AAA AGG AGG TGA ACT ACT GTG 0.66

Table 2 • Transcriptional mutants: point mutations
in the Pspac promoter

Strain –10 regulatory region Transcriptional efficiency
–10 +1

ERT57 CAT AAT GTG TGT AAT 6.63
ERT25 CAT AAT GTG TGG AAT 1.00
ERT53 CAT AAT GTG TGC AAT 0.79
ERT51 CAT AAT GTG TGA AAT 0.76
ERT55 CAT AAT GTG TAA AAT 0.76
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We find that the phenotypic noise strength shows a strong
positive correlation with translational efficiency (Fig. 2b,
slope=21.8), in contrast to the weak positive correlation
observed for transcriptional efficiency (Fig. 2c, slope=6.5).
Switching from the ERT27 strain to the ERT25 strain (an
increase in translational efficiency of about 15%; Table 1)
increases the noise strength from 32 to 35 units; the same effect
is achieved only upon doubling transcriptional efficiency (a
100% increase) from the half-induction to the full-induction
level. Experiments involving the control strains, in which tran-
scription rates were altered by mutation rather than by operon
induction, supported the weak correlation between noise
strength and transcriptional efficiency (Fig. 2c inset, slope=7.3).
The differential nature of our measurements (investigating
changes rather than absolute values) makes our results indepen-
dent of the specific properties of the reporter protein, such as
gene locus or folding characteristics. This suggests that

increased translational efficiency will strongly increase the vari-
ation in the expression of any naturally occurring gene.

A stochastic model for the expression of a single gene (Fig. 3a)
predicts that the noise strength (σp

2/〈p〉) is greater than Poisson-
ian (σp

2/〈p〉=1) and is simply an increasing function of transla-
tional efficiency12:

Here, b=kP/γR is the average number of proteins synthesized per
mRNA transcript; these proteins are injected into the cytoplasm
in sharp bursts (Fig. 3b). The measured asymmetry between the
noise contributions of transcriptional and translational parame-
ters is consistent with this prediction and provides evidence of

〈p〉 = k  b/γ  ,
R P

p
2σ

〈p〉
≅ 1+b   .
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Fig. 1 Phenotypic noise in a genetically identical bacterial population. a, Histogram showing the result of a typical experiment in which the expression level
of a fluorescent reporter protein is measured in a population of isogenic bacterial cells. Traditional population-averaged measurements would summarize
the entire histogram by its mean value 〈p〉; however, our single-cell measurements show that the expression level varies from cell to cell, with a standard devi-
ation σP. The phenotypic noise strength, defined as the quantity σP

2/〈p〉, is a measure of the spread of expression levels in a population. The relative standard
deviation σP/〈p〉, although a more common measure of phenotypic noise, obscures its essential behavior. For instance, the relative standard deviation for a
Poisson distribution is σP/〈p〉=1/〈p〉1/2, which decreases as the mean increases; but the noise strength for this distribution, σP

2/〈p〉=1, is independent of the
mean. In general, the noise strength circumvents the trivial effect of decreased noise with increased mean, and measures deviations from Poisson behavior.
b, Phenotypic noise strength for the four different translational mutants at fixed inducer concentration. Noise strength is clearly dependent on translational
efficiency. c, Phenotypic noise strength for one strain (ERT3) as inducer concentration is varied. The transcriptional efficiency does not significantly affect
noise strength.
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Fig. 2 Biochemical contribution to phenotypic noise. a, Complete experimental data. Each data point is the summarized result of an entire histogram correspond-
ing to a flow cytometer run of a population of typically 104–105 cells. The phenotypic noise strength of the population (z, in arbitrary fluorescence units) is plotted
as a function of transcriptional efficiency (x, depending on the IPTG concentration) and translational efficiency (y, depending on the translational mutant used).
Transcriptional and translational efficiencies are normalized to those of the wildtype ERT25 strain, allowing these parameters to be directly compared. These data
are fitted to a plane of the form z=a0+axx+ayy using a least-square routine, giving a0=7.1 ± 0.9, ax=6.5 ± 0.4, ay=21.8 ± 0.9. The ratio ay/ax=3.4 gives the relative
effect of translational versus transcriptional efficiency on phenotypic noise strength. b,c, For clarity, the three-dimensional data are projected parallel to the fit
plane onto the boundary planes x=1 (b), noise strength as a function of translation, and y=1 (c), noise strength as a function of transcription. The intersection of
the fit plane with each boundary plane is shown as a solid line; dotted lines indicate an interval of 1 s.d. Data in b are summarized separately for each translational
mutant (dark circles with error bars that represent 95% c.i.). Inset in c shows results of control experiments conducted on transcriptional mutants at full induction.
Three strains (ERT51, ERT53 and ERT55) are very similar, both in transcriptional efficiency and in noise strength, suggesting that biochemical noise is determined by
the actual transcription rate rather than by the specific method used to achieve it. The strain ERT57 shows a highly amplified transcriptional efficiency, allowing
reliable estimation of correlations. Data are summarized separately for each transcriptional mutant. A linear fit through these points gives a slope ax’=7.3 ± 0.3,
which is consistent with the slope ax=6.5 ± 0.4 obtained from a.
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the biochemical origin of phenotypic variability (Fig. 3c,d). Phe-
notypic noise in a population is therefore indicative of protein
concentration fluctuations over time in single cells.

Cell-to-cell variation in gene expression and flucuations over
time in single cells have broad implications. Noise is often harm-
ful, as it garbles cell signals, corrupts circadian clocks6 and dis-
rupts the fine-tuned process of development. Cell signaling
pathways13 and developmental switches14 have evolved so as to
minimize the disruptive effect of such fluctuations, in ways that
are only now beginning to be understood. Recently, Becskei and
Serrano reported that variation in gene expression could be
reduced by autoregulation15. We have shown that phenotypic
variation can be controlled by genetic parameters: low transla-
tion rates will lead to reduced fluctuations in protein concentra-
tion. Because our control parameters are general, our results
should be generally applicable. We suggest that several ineffi-
ciently translated regulatory genes (Table 3) have been naturally
selected for their low-noise characteristics, even though efficient
translation is energetically favorable16. For example, the cya gene
of Escherichia coli, whose downstream product cyclic AMP
(cAMP) is involved in several cellular regulatory processes, has a
low translation rate. The unusual and inefficient RBS of cya is
conserved across a variety of Gram-negative bacteria17, perhaps
because it suppresses harmful fluctuations in cAMP levels that
could have highly pleiotropic effects, including cell death18. In
some circumstances, noise can be highly desirable: an organism
could use high translation rates and large concentration fluctua-
tions as a means of creating nongenetic individuality in a popula-
tion19,20. This is seen with the cI gene of λ-phage4,21: upon
infection of a host cell, the cI mRNA is transcribed with an effi-
cient RBS upstream of the initiation codon, thus creating a high-

noise state; however, the lysogenic phenotype, once established,
is maintained in a low-noise state (since transcription then
begins at the initiation codon itself, producing inefficiently
translated mRNA4). Our experimental approach of creating low-
noise genes through the use of inefficient RBSs mirrors the struc-
ture of these natural systems. The technique of translational
noise control can be applied in the fast-growing field of artificial
genetic networks22,23. The current capabilities of artificially engi-
neered circuits such as genetic toggle switches24 or ring oscilla-
tors5 are limited by intrinsic noise. New methods of noise
reduction will allow these circuits to mimic the robust behavior
of natural biological systems and will enable their practical appli-
cation in areas such as biocomputation or the construction of
genetic biosensors.

Methods
Strains, growth conditions and media. We placed the gene gfpmut2 under
the control of the Pspac promoter and introduced mutations in the ribo-
some binding site, initiation codon and promoter region of gfpmut2 by
PCR. Mutations were verified by sequencing; spontaneous mutation fre-
quencies were negligible over the timecourse of our experiments. We
digested the PCR products and ligated them into the amyE integration vec-
tor pDR67, which contains a single copy of lacI downstream of the consti-
tutive promoter Ppen. We amplified the resulting recombinant plasmid in
the E. coli AG1111 strain and inserted it into the chromosome of the B. sub-
tilis JH642 strain by double-crossover at the amyE locus. (Cells of E. coli
and B. subtilis were made competent and transformed according to stan-
dard procedures.) The resulting B. subtilis strain contained a single copy of
gfpmut2 under the Pspac promoter and a single copy of lacI under the con-
stitutive Ppen promoter. The Pspac promoter includes a binding site for Lac
repressor, the product of the lacI gene; Pspac is externally inducible by
IPTG, which binds to and inhibits the repressor function of LacI. The con-
centration of IPTG in the growth medium therefore determines the tran-
scriptional efficiency of gfpmut2. Addition of IPTG is not expected to affect
native operon expression in B. subtilis.
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Fig. 3 The burst size effect. a, Modeling single-gene expression. mRNA mole-
cules are transcribed at rate kR from the template DNA strand. Proteins are
translated at a rate kP from each mRNA molecule. Proteins and mRNA degrade
at rates γP and γR, respectively. Degradation into constituents is denoted by a
slashed circle. b, Typically, mRNA is unstable when compared with the protein
product of a gene. During its brief lifetime, however, an mRNA molecule can
inject a large burst of proteins into the cytoplasm. A Monte Carlo timecourse
over a 30 min time interval shows bursts of protein creation of average size
b=kP/γR occurring at average rate kR. The magnitudes of these parameters are
indicated on the figure by bars. The timecourse in b is a magnified section of c.
c,d, Monte Carlo simulations of typical timecourses for protein number. Deter-
ministic timecourses are indicated as solid lines; the corresponding population
histogram is shown to the right of each timecourse. The following examples
both achieve the same mean protein concentration, but with different noise
characteristics. In both cases, γR =0.1 s–1 and γP =0.002 s–1; the burst size b is var-
ied to obtain different noise strengths, whereas the transcript initiation rate kR
is chosen to fix the mean protein number at 50. A gene with low transcription
but high translation rates (c; kR=0.01 s–1, b=10) produces bursts that are large,
variable and infrequent, resulting in strong fluctuations. Conversely, a gene
with high transcription and low translation rates (d, kR=0.1 s–1, b=1) produces
bursts that are small and frequent, causing only weak fluctuations in protein
concentration and producing a smaller phenotypic variation in the population.
Regulation of a two-step process, that of transcription followed by translation,
can therefore be used to independently adjust the mean protein concentra-
tion and the level of phenotypic noise in a bacterial population.

Table 3 • Examples of genes inefficiently
translated in Escherichia coli

Gene Function of gene product

cI regulator of bacteriophage-λ OR operator21

cya synthesis of cAMP17

malT regulator of maltose regulon16

nagC regulator of nag regulon26

tetR regulator of tetracycline resistance27

trpR repressor of trp, trpR and aroH operons28

a

b

c

d
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We grew cells overnight in Luria Bertani (LB) broth at 37 °C, diluted
these cultures and induced them with varying amounts of IPTG for at least
5 h at 37 °C. We grew non-induced strains to determine the amount of
background fluorescence due to auto-fluorescence. The background fluo-
rescence is very similar to the fluorescence measured for the B. subtilis
JH642 strain lacking gfpmut2. This implies that the Pspac promoter is
tightly controlled.

Data acquisition and analysis. We collected cells from growth cultures
at OD600 ≈ 1.0, which corresponds to the late exponential phase. To
eliminate cell aggregates, we centrifuged cells at 4,000 rpm for 1 min,
pelleted the supernatant at 14,000 rpm for 1 min and resuspended the
pellet in PBS. We independently confirmed the distributions of cell
shapes using fluorescence microscopy. Single-cell fluorescence measure-
ments were carried out on a Becton-Dickinson FACScan flow cytometer
with a 488-nm Argon excitation laser and a 525-nm emission filter.
FACScan data were analyzed on a Macintosh Quadra 650 using the Cell
Quest program. During each flow-cytometer experiment, we collected
data from 104–105 single cells; each run typically lasted for 2 min and was
conducted at room temperature. Cells from the same sample were often
analyzed in two runs separated by 15 min or more. The measured fluo-
rescence distribution was unchanged both during the course of a single
run and between two such runs. To reduce noise in fluorescence values
resulting from different cell sizes, we analyzed cells using the smallest
allowed gate in the side-scattering and forward-scattering space.

Determination of transcriptional and translational efficiencies. For
the translational mutants, we defined the transcriptional efficiency as
the average fluorescence measured for a specific strain at a certain IPTG
concentration normalized to the average fluorescence measured for that
strain at full induction ([IPTG]>1 mM). The translational efficiency of
a strain was defined as the average fluorescence of the strain at full
induction normalized to that of the wildtype strain (ERT25). For the
transcriptional mutants, we defined transcriptional efficiency for each
strain as the average fluorescence measured at full induction normalized
to that of the ERT25 strain. We determined parameter error bars over at
least 20 repeated measurements.

Modeling single gene expression. The noise properties of a single gene
can be derived using the Langevin technique. This approach yields sta-
tistics equivalent to those generated by large-scale Monte Carlo simula-
tions, but has the added advantage of providing insight into system
behavior25. We treat the mRNA number r and protein number p as con-
tinuous quantities and assume that fluctuations are introduced by
gaussian white noise sources:

Here, γR and γP represent the decay rates of mRNA and protein, respective-
ly; kR is the transcription rate and kP is the translation rate, so the rate of
protein creation is kP r (Fig. 3a). ηR and ηP are white noise sources with the
following statistics:

where angular braces represent population averages, and δ is the Dirac δ-
function. The noise magnitudes qi are chosen so that they are consistent
with the steady-state Poisson statistics of chemical reactions. For example,
in steady-state, the mRNA number is given by 〈r〉=kR/γR. Expanding
around this steady-state by setting r=〈r〉+δr gives:

dδr

dt
+γ   δr = η   .

R R

〈η  (t)〉=0,
i i i i

〈η  (t)η  (t+τ)〉=q  δ(τ), i=R or P,

dr
dt

+ γ  r = k  + η    , + γ  p = k  r + η   .
dp
dtR P P PR R

Fourier-transforming these equations by setting x(t)=∫eiωtx(ω)dω/2π gives

so that the steady-state value of the fluctuations is given by

Now we impose Poisson statistics by setting 〈δr2〉=〈r〉, giving qR=2kR, and
similarly, qp=2kPkR/γR. Protein number fluctuations can then be derived as

We define the noise strength to be the quantity ν=〈δp2〉/〈p〉, also known as
the Fano factor (Fig. 1a). For a Poisson process, ν=1; for an arbitrary sto-
chastic process, the noise strength reveals deviations from Poissonian
behavior. Setting φ=γP/γR and defining the burst size b=kP/γR finally gives

Typically, φ is a small quantity (mRNA is unstable compared with protein),
so that the result above reduces to that shown in the main text.

Monte Carlo simulations. Simulations were implemented using Gille-
spie’s algorithm for stochastic coupled chemical reactions1. The reactions
simulated are those schematically indicated in Fig. 3a. We assume individ-
ual reactions to be Poisson, so that the probability of a reaction with rate k
happening in a time dt is given by kdt, and the waiting times between suc-
cessive reactions are exponentially distributed. We assume that steady-state
has been reached at a time equal to ten times the protein half-life. Each
simulated histogram is the result of 5,000 trials.

Software. We converted data to ASCII format using MFI (E. Martz,
Univ. of Massachusetts, Amherst, available at http://www.umass.edu/
microbio/mfi.
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