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molecular biologists routinely clone genetic constructs from 
dnA segments and formulate plans to assemble them. however, 
manual assembly planning is complex, error prone and not 
scalable. We address this problem with an algorithm-driven 
dnA assembly planning software tool suite called raven 
(http://www.ravencad.org/) that produces optimized assembly 
plans and allows users to apply experimental outcomes to 
redesign assembly plans interactively. We used raven to 
calculate assembly plans for thousands of variants of five 
types of genetic constructs, as well as hundreds of constructs 
of variable size and complexity from the literature. Finally, 
we experimentally validated a subset of these assembly plans 
by reconstructing four recombinase-based ‘genetic counter’ 
constructs and two ‘repressilator’ constructs. We demonstrate 
that raven’s solutions are significantly better than unoptimized 
solutions at small and large scales and that raven’s assembly 
instructions are experimentally valid.

Genetic engineering technology has increased in scale and com-
plexity since it was invented 40 years ago. In the past decade, a 
number of DNA assembly methods have emerged1–6 that include 
restriction-ligation–based and homologous recombination–based 
cloning systems, and many follow the design model of assembling 
genetic ‘constructs’ from genetic ‘parts’7. While the precise defi-
nitions of these terms have been debated8, the consensus is that 
parts are DNA segments and constructs are ordered sets of these 
parts. Given this design model, two fundamental questions arise: 
First, how should we identify and select parts to create the desired 
functional genetic constructs? Second, once these constructs have 
been selected, how do we physically assemble them? This work 
formalizes this second question and provides algorithms that 
address experimental realities to improve the speed, modularity 
and experimental efficiency of this process for state-of-the-art 
DNA cloning techniques.

Cloning-based assembly approaches can be broadly classified  
into binary assembly techniques, where two DNA parts are 
assembled in one cloning step, and multi-way (one-pot) assembly  
techniques, where two or more parts are assembled in one step. 
Generally speaking, multi-way assembly methods are faster 
because they can minimize cloning steps and can be exploited 
to leave no assembly artifacts in a completed construct, while 
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binary assembly methods typically require more cloning steps, 
but in some cases utilize specific cloning sites to allow a simpler 
standardization of part composition and modularity.

Previous work9,10 detailed hierarchical assembly algorithms for 
binary assembly11 but lacked formulation to address more modern 
multi-way assembly techniques. There are few automated tools to 
exploit the high degrees of modularity and reuse for multi-way 
techniques, and no tools for producing complete assembly plans. 
Some approaches12 detail the process of automatically selecting 
oligonucleotides and analyze trade-offs between cloning and gene 
synthesis for multi-way assembly; however, they do not optimize 
cloning steps and stages.

This article describes a method for performing optimizations 
on intermediate cloning step selection and part junction selection 
for any number of target constructs while considering a library 
of existing parts for reuse. We show that for sets of thousands 
of variants of multiple types of contemporary genetic constructs 
and a large set of constructs from the literature13–20, our program 
outperforms unoptimized solutions (P(z) < 0.001), and we then 
experimentally verify a small subset of these optimized solutions 
by reconstructing ‘genetic counter’ and ‘repressilator’ constructs. 
This work also details, to our knowledge, the first automated  
cloning workflow in which experimental outcomes may be 
directly fed back into the software to recalculate an alternative 
assembly plan.

The algorithms presented are housed in an online web applica-
tion called Raven that produces full assembly plans in human- and 
computer-readable instructions and graphical Synthetic Biology 
Open Language (SBOL)-compatible images for each of the  
supported assembly methods1–5,11.

results
Algorithm overview
In this work, we break the problem of assembling a set of DNA 
constructs with a selected cloning technique into three main sub-
problems. First, we determine an optimized hierarchical cloning 
plan for assembling a set of constructs. For this part, Raven uses 
dynamic programming to reduce the computational time it takes 
to solve the large problem of selecting intermediate cloning steps 
for a set of target constructs into smaller sub-problems. Because 
the heuristic scores for assembling a specific intermediate are 
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assumed to remain constant regardless of previous or future clon-
ing steps, once an optimized heuristic solution for an intermediate 
is found, the solution is reused if the candidate intermediate step 
is encountered again. For constructs that share parts internally 
or share parts with other target constructs, sharing of assembly 
intermediates can reduce the total step count considerably, and, if 
many steps can be done in parallel, the number of cloning stages 
can also be minimized. The cloning step solution comprising all 
the stages and steps necessary to build the target constructs under 
consideration constitutes a hierarchical ‘assembly graph’.

Second, we determine an optimized set of part junctions (here-
after referred to as ‘overhangs’) required to perform the selected 
cloning steps. Overhang assignment, which aims to minimize 
overhang generation cost (hereafter ‘PCR steps’), is determined 
in three steps. First, the requirements for overhang uniqueness 
based on the selected assembly method are determined (for exam-
ple, all parts must have unique pairs in each individual cloning 
step). Second, for modular overhang assignment, overhang pair 
sharing is maximized for all cloning steps where sharing can 
eliminate extra steps and the total number of unique overhang 
sequences is minimized. The second step is skipped for some 
assembly methods because it is assumed that all overhangs are 
either the same or all are unique. Third, after all overhang pairs 
have been determined, the existing parts library is used to map 
abstract overhangs to DNA sequences, maximizing library reuse 
with a constrained Cartesian product (Supplementary Software 
and Supplementary Figs. 1–3).

Third, based on the cloning steps and their overhangs, oligo-
nucleotides for PCR are automatically designed (Fig. 1a–c). For 

all PCR steps, primers are designed on the basis of part, overhang 
sequence, direction (forward or reverse strand) and assembly 
method. The primer designs are optimized for length and melting 
temperature, but other complex optimizations are not considered. 
For more sophisticated primer designs, we provide outputs com-
patible with existing state-of-the-art primer design software12. 
The summary of all cloning steps, PCR steps and oligonucleotide 
designs constitutes a complete ‘assembly plan’.

Following Raven’s assembly instructions, a user might encoun-
ter some assembly steps that fail. The user can then mark each step 
in the plan as successful, failed or not attempted (as a result of step 
failures in an earlier stage) (Fig. 1c) to recalculate an alternative 
assembly plan. The parts from the successful steps are added to 
the library and failed steps are forbidden from appearing in a new 
plan (Fig. 1d,e). The interactive refinement of an assembly plan is 
meant to be independent of specific protocols and reaction con-
ditions and can complement troubleshooting specific reactions 
in a preliminary plan. This process continues iteratively until all 
target parts are assembled. As this algorithm relies on heuristics 
in many locations, we cannot make any claims that it is optimal. 
However, we can prove that the solutions are correct in linear time 
as a function of the number of intermediates.

In silico assembly of thousands of constructs
To determine the quality of Raven’s assembly plans, we compared 
our solutions against unoptimized solutions for each data set  
by randomly sampling the assembly plan space for each set  
of constructs under consideration (Supplementary Note). For 
both unoptimized solutions and Raven solutions, we assumed no 
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Figure 1 | Example assembly of the repressilator21 with Gibson assembly. The graphic symbols are composed using Pigeon22 (http://www.pigeoncad.org/) 
from SBOL23 (http://www.sbolstandard.org/) visual images to denote part types. (a) The repressilator. (b) Starting library consists only of template DNA. 
(c) A plan for assembling the repressilator given b requires 13 PCRs, 4 steps and 2 stages. Two steps fail (steps 2 and 3; red boxes), one step succeeds 
(step 1; green box) and the dependent step in the second stage cannot be attempted (orange box). (d) The updated library contains basic parts and 
intermediate parts with specific overhangs from c. (e) An optimized plan, in which all steps succeed (green boxes), is generated with no PCRs,  
three steps and two stages.
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preexisting library of parts except template DNA and constrained 
our assembly calculations such that a maximum of six parts could 
be assembled per reaction for one-pot assemblies, as reactions 
with more parts show low efficiency.

First we considered several published sets of complex genetic 
constructs covering a variety of sizes, types and architectures13–20. 
For each of these sets, we determined optimized and unoptimized  
solutions for BioBricks (BioBricks Foundation request for  
comments (BBF RFC) 10), MoClo (BBF RFC 94) and Gibson 
assembly methods.

Assembly solutions were scored in terms of cloning stages, clon-
ing steps and PCR steps, and the Raven solutions are compared  
to average unoptimized solutions (Table 1) and the best unop-
timized solutions (Supplementary Table 1). Raven’s solutions 
were significantly better than unoptimized solutions for assem-
bly stages (P(z) < 0.01) for all three assembly methods for nearly  
all construct sets. Raven’s MoClo solutions were significantly  
better for both cloning steps and PCR steps (P(z) < 0.01).  
Raven’s solutions had significantly fewer cloning step solutions 
for Gibson (P(z) < 0.01) for all construct sets, and in only one 
BioBricks solution did the unoptimized plans result in fewer steps. 
However, as Raven’s strongest scoring heuristic is cloning stages, 
when selecting the best assembly plan, Raven allows additional 
steps in favor of fewer stages. Similarly, the summary of all sets 
has a better cloning-step solution for BioBricks because of the 
inclusion of the aforementioned set, which contains by far the 
greatest number of constructs of the considered construct sets. 
For BioBricks and Gibson cloning, the number of PCRs is not 
optimized, so all Raven answers are equivalent to those of the 
unoptimized solution.

Next, to demonstrate the power of Raven solutions on an even 
larger scale, we used Eugene24 to generate a set of 1,000 or more 
variant constructs for five separate types of constructs: DNA 
invertase cascade (DIC) counters, toggle switches, repressilators, 
transcriptional NOR gates and invertase NOR gates (Fig. 2a and 
Supplementary Note). Because it is common for large constructs 

to need tuning to achieve function, these sets contain variants 
to represent a spectrum of possible function and provide many 
opportunities to share intermediates.

To determine one unoptimized solution for each of these sets, 
we randomly selected 500 constructs and calculated an unopti-
mized, one-pot hierarchical assembly graph. We repeated this 
experiment 1,000 times for each of the five designs to get a distri-
bution for each type of design and found that Raven’s algorithms 
were able to select assembly graphs that require significantly fewer 
cloning steps than the average unoptimized graphs for all five 
designs (P(z) < 0.001) (Fig. 2b). Because these data sets were  
made from combinatorial part substitutions, there exist many 
opportunities to share cloning intermediates and assembly  
vectors using modular overhangs. We observed that our modular 
overhang assignment solutions required significantly fewer PCRs 
than unoptimized solutions for overhang assignment for each of 
the five design types (P(z) < 0.001) (Fig. 2c).

Finally, we determined how Raven’s solutions performed as  
a function of the number of constructs under consideration.  
We repeated the in silico experiments for the five design types 
for variable numbers of constructs. We found that Raven’s  
solutions significantly outperformed the unoptimized solution 
spaces for both cloning steps and PCR steps (Fig. 2d) at a small 
scale of 5 constructs (P(z) < 0.001) as well as at a larger scale of 
500 constructs (P(z) < 0.001). As the number of constructs under 
consideration increases exponentially, Raven’s solutions for both 
hierarchical assembly and overhang assignment also improve 
exponentially compared to unoptimized solutions (Fig. 2d).

interactive assembly of genetic constructs
To highlight Raven’s ability to utilize an existing library of  
constructs, we used it to calculate an assembly plan for six  
repressilator21 constructs using an existing library with an exist-
ing overhang schema. The constructs were designed based on 
previously published schema using the CIDAR (http://www.
cidarlab.org/) MoClo library as a resource. Design constraints 

table 1 | Raven-optimized and average unoptimized assembly scores for constructing plasmids from the literature

construct  
source no.

unoptimized solutions raven solution

rFc10 rFc94 Gibson rFc10 rFc94 Gibson

Bonnet et al.20 6 6.09 45.7 21 3.83 47.7 58 2.67 12.3 34 5 43 21 3 39 54 2 8 34
0.80 1.24 0 0.56 2.07 0 0.59 2.05 0 0.08 0.02 0.5 0.07 <0.01 0 0.13 0.02 0.5

Bonnet et al.19 13 6.81 80.9 23 4.41 116 127 3.27 32.9 55 5 73 23 3 75 104 2 24 55
0.64 2.61 0 0.52 4.50 0 0.50 2.73 0 <0.01 <0.01 0.5 <0.01 <0.01 0 <0.01 <0.01 0.5

Friedland et al.14 5 8.97 89.7 27 4.99 101 125 4.99 33.3 50 6 74 27 3 49 62 2 19 50
0.87 3.49 0 0.59 4.05 0 0.59 2.91 0 <0.01 <0.01 0.5 <0.01 <0.01 0 <0.01 <0.01 0.5

Lou et al.13 191 7.81 482 90 6.15 869 420 4.13 477 449 5 624 90 3 401 266 2 381 449
0.59 23.2 0 0.54 34.4 0 0.36 10.1 0 <0.01 1 0.5 <0.01 <0.01 0 <0.01 <0.01 0.5

Moon et al.17 15 8.70 106 37 4.82 135 140 3.66 38.0 84 6 102 37 3 71 90 2 22 84
0.99 3.03 0 0.58 4.87 0 0.60 3.62 0 <0.01 0.09 0.5 <0.01 <0.01 0 <0.01 <0.01 0.5

Suiti et al.18 23 7.39 125 19 4.87 224 255 3.60 71.4 97 5 121 19 3 171 234 2 55 97
0.63 4.38 0 0.48 7.51 0 0.59 3.99 0 <0.01 0.18 0.5 <0.01 <0.01 0 <0.01 <0.01 0.5

Tabor et al.15 6 7.76 49.2 12 4.61 76.9 98 3.49 23.1 26 5 39 12 3 39 51 2 14 26
0.82 3.56 0 0.58 3.47 0 0.56 2.36 0 <0.01 <0.01 0.5 <0.01 <0.01 0 <0.01 <0.01 0.5

Tamsir et al.16 14 6.30 60.6 15 4.24 84.1 93 2.89 28.8 53 4 56 15 3 59 69 2 21 53
0.53 2.27 0 0.50 4.24 0 0.52 2.71 0 <0.01 0.02 0.5 <0.01 <0.01 0 0.04 <0.01 0.5

All 273 9.28 969 204 6.17 1,566 907 4.36 717 844 6 1,092 204 3 879 797 2 544 844
0.85 23.8 0 0.48 24.7 0 0.51 13.2 0 <0.01 0.99 0.5 <0.01 <0.01 0 <0.01 <0.01 0.5

Number of constructs (no.) considered in each set is shown. Numbers in each set of columns refer to cloning stages, cloning steps and PCR steps, respectively. Unoptimized solutions are  
represented by averages (top of each row) and s.d. (bottom of each row). Raven solutions are reported (top), along with the probability, P(z), of selecting this solution randomly using a  
statistical z-test (bottom). P values are calculated assuming a normal distribution of assembly outcomes.

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.cidarlab.org/
http://www.cidarlab.org/


660  |  VOL.11  NO.6  |  JUNE 2014  |  nAture methods

Articles

allowed only up to four parts per cloning step, as opposed to six. 
The assembly plan for these six constructs required 17 assembly 
steps, 2 assembly stages, 0 PCR reactions and 23 shared parts, and 
we successfully constructed two constructs without modification 
to this plan (Supplementary Fig. 4).

We then selected a subset of the constructs from Friedland et al.14  
(representing some of the largest and most complex constructs 
in the sets) and constructed them using Raven. We used a MoClo 
assembly plan (BBF RFC 94) for the DIC counter constructs, 
assuming a library of only template DNA and cloning vectors. 
The Raven-designed oligonucleotides from the assembly plan 
were used to amplify parts using the original constructs as tem-
plate (Supplementary Fig. 5 and Online Methods), overhang 
sites were chosen from a preselected set of 4-bp modular scars 
(Supplementary Table 2) and it was assumed that all cloning 
steps would have equivalent cloning efficiency. The assembly plan 
for all four constructs required 29 steps, 3 stages and 34 PCR 
steps (Fig. 3a and Supplementary Fig. 6). We implemented this 
preliminary assembly plan as specified by the human-readable 
instructions that Raven generated, using standard reaction condi-
tions (Online Methods and Fig. 3a).

This initial plan was not successful. However, Raven has four 
primary mechanisms for interactively modifying assembly plans 
to circumvent unsuccessful cloning steps. First, Raven can detect 
undesirable restriction sites that can be removed with PCR.  

Second, intermediate clones flagged for expressing undesirable 
genes (such as the flpe recombinase) or other traits (Fig. 3b)  
can be biased for or against appearing in an assembly plan 
(Supplementary Fig. 7). Third, default cloning vectors assigned 
to each assembly stage based on each assembly method may  
be substituted. Finally, cloning efficiency as a function of  
number of parts assembled per cloning reaction may be modi-
fied from default equivalent-efficiency values (Supplementary 
Figs. 8 and 9).

In cases where users have already started a large assembly  
but get stuck on unforeseen challenges, they can use the Raven 
redesign feature (Fig. 3c) to calculate a new plan. When using 
this feature, Raven automatically adds the successful parts into 
the library and forbids failed intermediates from appearing in 
the alternative solution. When we got stuck on the first plan for  
the counters, we used a redesigned solution, which required  
seven steps, two stages and two PCR steps (Supplementary  
Fig. 10). This plan reused the four successful intermediates 
from the initial plan and split up the two unsuccessful inter-
mediates into smaller intermediates. One of these intermediates 
was also unsuccessful, so a second redesign with the same cost  
was implemented that succeeded in the cloning of all intermedi-
ates (Supplementary Fig. 11).

This third plan, although successful for creating all intermedi-
ates, was not successful for cloning the final constructs. This was 
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Figure 2 | In silico assembly with Raven. (a) SBOL visual representations of the DIC counter, invertase NOR gate, repressilator, toggle switch and 
transcriptional NOR gate constructs, indicating the number of parts we sampled at each position and the total possible construct variants after 
application of Eugene rules. (b) Cloning steps required for MoClo assembly of a 500-construct subset of each set of 1,000 or more constructs from a. 
Asterisks represent the Raven solution; other points represent unoptimized cloning step solutions. (c) PCR steps required for MoClo assembly given  
the cloning step solution in b. Asterisks represent the Raven solution; other points represent random PCR step solutions. (d) The fold improvement  
of Raven’s solution compared to unoptimized solutions in b,c as a function of construct quantity. Raven’s solutions improve as the number of  
constructs per assembly plan increases. PCR steps (dashed) and cloning steps (solid) are shown separately.
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because BBF RFC 94 assumes the use of high-copy plasmids for 
all cloning steps. In this case, since it is critical that recombinases 
are not expressed, it was problematic to clone the final counter  
constructs into high-copy plasmids owing to leaky promoter 
behavior. To address this, we forced an extra cloning stage by 
requiring the construction of larger intermediates and assigned a 
pBAC25 for the final cloning stage (Supplementary Fig. 12).

Using this plan, all cloning intermediates were constructed and 
used to build the final constructs successfully (Fig. 3d). Several 
of the intermediates incurred mutations as a result of cloning 
artifacts, but these were located at internal part junctions and the 
flanking junctions needed for future steps remained unaltered. 
Therefore, Raven cannot guarantee the production of an exact  
target sequence; in vivo recombination events are difficult to  
predict and outside the scope of the assembly plan. Moreover, as 
long as the necessary restriction sites and part junctions remain 
intact, the Raven plan remains valid.

discussion
Because it is not feasible for a human to design hundreds or 
thousands of assembly plans manually and even more difficult 
to produce efficient and low-cost solutions for such sets, a com-
putational tool to automatically determine these solutions is 
needed. And because assembly planning instructions are neces-
sary for liquid-handling robots and microfluidics to perform high 
throughput cloning and other automation techniques, the absence 
of an automated method to inform a robot which steps to take to 
assemble genetic constructs would severely limit the automation 
power of a larger tool pipeline.

Raven generates experimentally valid assembly plans, and, 
although it cannot guarantee success of any one plan or com-
plete target sequence, it can generate new plans on the basis  
of some specific step failures and efficiency data. While these 
algorithms have the ability to incorporate feedback of reaction 
failures and successes to produce better solutions, they do not 
provide any methodology for predicting the success or failure  
of specific assembly steps or the construct’s function. It is impor-
tant to note that some standardized cloning protocols cannot  
be rigidly implemented to clone all constructs owing to inher-
ent complexity of function of the constructs under considera-
tion: some cloning challenges still must be solved by amending  
standard protocols and thus fall outside the purview of a protocol-
agnostic assembly plan.

Finally, formal assembly files can be used to capture assembly 
information from previously attempted assemblies. The docu-
mentation of cloning reaction success and failure and of the  
path to successful assembly can be accumulated and allow easier 
reproduction of published work. This is particularly important 
because this information is often poorly documented, which 
hinders the ability to build on previous work. Formally docu-
mented assembly planning provides a better avenue for track-
ing this information, and previously attempted assemblies could 
be studied to develop new heuristics and bring further insight  
to popular molecular cloning methods.

Raven currently supports only six highly used, well-defined 
cloning methods, but additional systematic biases and constraints 
outside the tool’s core heuristics can be applied to Raven’s solutions 
by specifying forced, forbidden, recommended and discouraged 
intermediates and specific cloning vectors. Moreover, the princi-
ples of this approach could be expanded and further generalized 
to nearly to any cloning method, provided common sub-problem 
scoring required by dynamic programming. The generality of the 
algorithmic solutions and the breadth of the permitted inputs 
allow assembly solutions to be adapted to potentially any DNA 
assembly method because Raven broadly suggests how to reuse 
DNA libraries to build a set of genetic constructs.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Cloning destination vectors. The lacZα fragment was PCR 
amplified from a lacZα-containing cloning vector (pMJS2AF, 
donated by M. Smanski) and subsequently cloned into three 
backbones, depending on the MoClo level: level 0 used pSB1A2, 
level 1 used pSB1K3, and level 2 used pSB1A2. DNA containing 
the lacZα fragment was used as template for PCR reactions. PCR 
reactions with 5× Phusion HF buffer, 100 µM dNTPs, Phusion 
DNA polymerase, 5% DMSO, 1 mM MgCl2 (New England 
BioLabs, Ipswich, MA, USA) and sterile diH2O. Reactions were 
performed using the following parameters: one denaturation 
step at 95 °C for 5 min, followed by 30 extension cycles (95 °C 
20 s., 61 °C 20 s., 72 °C 15 s.), a final 5 min extension step at 
72 °C and then incubation at 4 °C. PCR products over 100 bp 
were purified using either the QIAquick PCR Purification Kit 
(Qiagen Inc., Valencia, CA, USA) or GenCatch PCR Purification 
Kit (Epoch Life Sciences, Sugar Land, TX, USA) according to the 
manufacturer’s protocol. PCR products and pSB1K3 and pSB1A2 
vectors were digested with SpeI enzyme (NEB) according to the 
manufacturer’s protocol using up to 500 ng DNA. Restriction 
digestions were purified using the QIAquick PCR Purification 
Kit (Qiagen) following the manufacturer’s protocol. Ligation 
reactions were performed with T4 DNA ligase (NEB) follow-
ing the manufacturer’s protocol with a 3:1 insert part to vector 
backbone ratio.

MoClo (BBF RFC 94) cloning protocol. Each MoClo reaction 
had the following contents: 40 fmol of each DNA component 
(DNA PCR product or previously made MoClo DNA parts, and 
the appropriate destination vector), BsaI or BbsI (BsaI for level 1,  

BbsI for level 0 and level 2; NEB), high concentration T4 DNA 
ligase (C M1794, Promega, Madison, WI, USA), T4 DNA ligase 
buffer (Promega) and sterile, diH2O. Reactions performed using 
the following parameters: 25–35 cycles (37 °C 1.5 min, 16 °C  
3 min), followed by 50 °C for 5 min and 80 °C for 10 min and 
then a hold at 4 °C until transformed. Level 0 reactions were 
done for 25 cycles, while level 1 and 2 reactions were done for 
25–30 cycles. Transformations were done into Alpha Select Gold 
Efficiency (Bioline USA Inc., Taunton, MA, USA), DH5α-Z1 and 
epi300 competent Escherichia coli cells. Transformations were 
heat-shocked at 42 °C for 45 s and recovered in SOC medium for 
1 h at 37 °C, 300 r.p.m.

Primer design. Primers for MoClo (BBF RFC 94) assembly  
were designed in the following format for parts larger than 24 bp:  
NN-[BpiI recognition site]-NN-1234-part-5768-NN-[BpiI  
recognition site]-NN. Forward primers: 5′-NN-GAAGAC-NN-
[overhang sequence]-[first 24 bp of part]-3′. Reverse primers:  
5′-[last 24 bp of gene]-[overhang sequence]-NN-GTCTTC-NN-3′.  
For parts smaller than 24 bp, annealing primers were designed 
that adhere to the preceding format.

Assembly algorithms. All algorithms in Raven are implemented 
in Java. The Raven user interface is implemented in JavaScript 
using jQuery and Bootstrap libraries. Scripts for recommended, 
discouraged, forbidden and required parts are implemented in 
Eugene. Automatic graphical assembly pictures are generated 
using graphviz libraries and automatically generated construct 
glyphs from http://pigeoncad.org/. Pseudocode for Raven algo-
rithms detailed in the Supplementary Software.
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