
Articles

nAture methods  |  VOL.11  NO.6  |  JUNE 2014  |  657

molecular biologists routinely clone genetic constructs from
dnA segments and formulate plans to assemble them. however,
manual assembly planning is complex, error prone and not
scalable. We address this problem with an algorithm-driven
dnA assembly planning software tool suite called raven
(http://www.ravencad.org/) that produces optimized assembly
plans and allows users to apply experimental outcomes to
redesign assembly plans interactively. We used raven to
calculate assembly plans for thousands of variants of five
types of genetic constructs, as well as hundreds of constructs
of variable size and complexity from the literature. Finally,
we experimentally validated a subset of these assembly plans
by reconstructing four recombinase-based ‘genetic counter’
constructs and two ‘repressilator’ constructs. We demonstrate
that raven’s solutions are significantly better than unoptimized
solutions at small and large scales and that raven’s assembly
instructions are experimentally valid.

Genetic engineering technology has increased in scale and com-
plexity since it was invented 40 years ago. In the past decade, a
number of DNA assembly methods have emerged1–6 that include
restriction-ligation–based and homologous recombination–based
cloning systems, and many follow the design model of assembling
genetic ‘constructs’ from genetic ‘parts’7. While the precise defi-
nitions of these terms have been debated8, the consensus is that
parts are DNA segments and constructs are ordered sets of these
parts. Given this design model, two fundamental questions arise:
First, how should we identify and select parts to create the desired
functional genetic constructs? Second, once these constructs have
been selected, how do we physically assemble them? This work
formalizes this second question and provides algorithms that
address experimental realities to improve the speed, modularity
and experimental efficiency of this process for state-of-the-art
DNA cloning techniques.

Cloning-based assembly approaches can be broadly classified
into binary assembly techniques, where two DNA parts are
assembled in one cloning step, and multi-way (one-pot) assembly
techniques, where two or more parts are assembled in one step.
Generally speaking, multi-way assembly methods are faster
because they can minimize cloning steps and can be exploited
to leave no assembly artifacts in a completed construct, while

interactive assembly algorithms for molecular cloning
Evan Appleton1,2, Jenhan Tao3, Traci Haddock2 & Douglas Densmore1,2,4

binary assembly methods typically require more cloning steps,
but in some cases utilize specific cloning sites to allow a simpler
standardization of part composition and modularity.

Previous work9,10 detailed hierarchical assembly algorithms for
binary assembly11 but lacked formulation to address more modern
multi-way assembly techniques. There are few automated tools to
exploit the high degrees of modularity and reuse for multi-way
techniques, and no tools for producing complete assembly plans.
Some approaches12 detail the process of automatically selecting
oligonucleotides and analyze trade-offs between cloning and gene
synthesis for multi-way assembly; however, they do not optimize
cloning steps and stages.

This article describes a method for performing optimizations
on intermediate cloning step selection and part junction selection
for any number of target constructs while considering a library
of existing parts for reuse. We show that for sets of thousands
of variants of multiple types of contemporary genetic constructs
and a large set of constructs from the literature13–20, our program
outperforms unoptimized solutions (P(z) < 0.001), and we then
experimentally verify a small subset of these optimized solutions
by reconstructing ‘genetic counter’ and ‘repressilator’ constructs.
This work also details, to our knowledge, the first automated
cloning workflow in which experimental outcomes may be
directly fed back into the software to recalculate an alternative
assembly plan.

The algorithms presented are housed in an online web applica-
tion called Raven that produces full assembly plans in human- and
computer-readable instructions and graphical Synthetic Biology
Open Language (SBOL)-compatible images for each of the
supported assembly methods1–5,11.

results
Algorithm overview
In this work, we break the problem of assembling a set of DNA
constructs with a selected cloning technique into three main sub-
problems. First, we determine an optimized hierarchical cloning
plan for assembling a set of constructs. For this part, Raven uses
dynamic programming to reduce the computational time it takes
to solve the large problem of selecting intermediate cloning steps
for a set of target constructs into smaller sub-problems. Because
the heuristic scores for assembling a specific intermediate are

1Graduate Program in Bioinformatics, Boston University, Boston, Massachusetts, USA. 2Center of Synthetic Biology, Boston University, Boston, Massachusetts, USA.
3Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, USA. 4Department of Electrical and Computer
Engineering, Boston University, Boston, Massachusetts, USA. Correspondence should be addressed to D.D. (dougd@bu.edu).
Received 27 novembeR 2013; accepted 7 apRil 2014; published online 28 apRil 2014; doi:10.1038/nmeth.2939

np
g

©
 2

01
4

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://www.ravencad.org/
http://www.nature.com/doifinder/10.1038/nmeth.2939

658  |  VOL.11  NO.6  |  JUNE 2014  |  nAture methods

Articles

assumed to remain constant regardless of previous or future clon-
ing steps, once an optimized heuristic solution for an intermediate
is found, the solution is reused if the candidate intermediate step
is encountered again. For constructs that share parts internally
or share parts with other target constructs, sharing of assembly
intermediates can reduce the total step count considerably, and, if
many steps can be done in parallel, the number of cloning stages
can also be minimized. The cloning step solution comprising all
the stages and steps necessary to build the target constructs under
consideration constitutes a hierarchical ‘assembly graph’.

Second, we determine an optimized set of part junctions (here-
after referred to as ‘overhangs’) required to perform the selected
cloning steps. Overhang assignment, which aims to minimize
overhang generation cost (hereafter ‘PCR steps’), is determined
in three steps. First, the requirements for overhang uniqueness
based on the selected assembly method are determined (for exam-
ple, all parts must have unique pairs in each individual cloning
step). Second, for modular overhang assignment, overhang pair
sharing is maximized for all cloning steps where sharing can
eliminate extra steps and the total number of unique overhang
sequences is minimized. The second step is skipped for some
assembly methods because it is assumed that all overhangs are
either the same or all are unique. Third, after all overhang pairs
have been determined, the existing parts library is used to map
abstract overhangs to DNA sequences, maximizing library reuse
with a constrained Cartesian product (Supplementary Software
and Supplementary Figs. 1–3).

Third, based on the cloning steps and their overhangs, oligo-
nucleotides for PCR are automatically designed (Fig. 1a–c). For

all PCR steps, primers are designed on the basis of part, overhang
sequence, direction (forward or reverse strand) and assembly
method. The primer designs are optimized for length and melting
temperature, but other complex optimizations are not considered.
For more sophisticated primer designs, we provide outputs com-
patible with existing state-of-the-art primer design software12.
The summary of all cloning steps, PCR steps and oligonucleotide
designs constitutes a complete ‘assembly plan’.

Following Raven’s assembly instructions, a user might encoun-
ter some assembly steps that fail. The user can then mark each step
in the plan as successful, failed or not attempted (as a result of step
failures in an earlier stage) (Fig. 1c) to recalculate an alternative
assembly plan. The parts from the successful steps are added to
the library and failed steps are forbidden from appearing in a new
plan (Fig. 1d,e). The interactive refinement of an assembly plan is
meant to be independent of specific protocols and reaction con-
ditions and can complement troubleshooting specific reactions
in a preliminary plan. This process continues iteratively until all
target parts are assembled. As this algorithm relies on heuristics
in many locations, we cannot make any claims that it is optimal.
However, we can prove that the solutions are correct in linear time
as a function of the number of intermediates.

In silico assembly of thousands of constructs
To determine the quality of Raven’s assembly plans, we compared
our solutions against unoptimized solutions for each data set
by randomly sampling the assembly plan space for each set
of constructs under consideration (Supplementary Note). For
both unoptimized solutions and Raven solutions, we assumed no

a b

pLlac01 tetR-lite T1 pSC101 ampRλPR lacI-lite pLtet01 λ cI-lite

d e

S
ta

ge
 1

S
ta

ge
 2

S
te

p
1

S
te

p
2

S
te

p
3

c

S
te

p
1

S
te

p
2

S
te

p
3

S
te

p
4

S
ta

ge
 1

S
ta

ge
 2

P
C

R
 s

te
ps

Figure 1 | Example assembly of the repressilator21 with Gibson assembly. The graphic symbols are composed using Pigeon22 (http://www.pigeoncad.org/)
from SBOL23 (http://www.sbolstandard.org/) visual images to denote part types. (a) The repressilator. (b) Starting library consists only of template DNA.
(c) A plan for assembling the repressilator given b requires 13 PCRs, 4 steps and 2 stages. Two steps fail (steps 2 and 3; red boxes), one step succeeds
(step 1; green box) and the dependent step in the second stage cannot be attempted (orange box). (d) The updated library contains basic parts and
intermediate parts with specific overhangs from c. (e) An optimized plan, in which all steps succeed (green boxes), is generated with no PCRs,
three steps and two stages.

np
g

©
 2

01
4

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://www.pigeoncad.org/
http://www.sbolstandard.org/

nAture methods  |  VOL.11  NO.6  |  JUNE 2014  |  659

Articles

preexisting library of parts except template DNA and constrained
our assembly calculations such that a maximum of six parts could
be assembled per reaction for one-pot assemblies, as reactions
with more parts show low efficiency.

First we considered several published sets of complex genetic
constructs covering a variety of sizes, types and architectures13–20.
For each of these sets, we determined optimized and unoptimized
solutions for BioBricks (BioBricks Foundation request for
comments (BBF RFC) 10), MoClo (BBF RFC 94) and Gibson
assembly methods.

Assembly solutions were scored in terms of cloning stages, clon-
ing steps and PCR steps, and the Raven solutions are compared
to average unoptimized solutions (Table 1) and the best unop-
timized solutions (Supplementary Table 1). Raven’s solutions
were significantly better than unoptimized solutions for assem-
bly stages (P(z) < 0.01) for all three assembly methods for nearly
all construct sets. Raven’s MoClo solutions were significantly
better for both cloning steps and PCR steps (P(z) < 0.01).
Raven’s solutions had significantly fewer cloning step solutions
for Gibson (P(z) < 0.01) for all construct sets, and in only one
BioBricks solution did the unoptimized plans result in fewer steps.
However, as Raven’s strongest scoring heuristic is cloning stages,
when selecting the best assembly plan, Raven allows additional
steps in favor of fewer stages. Similarly, the summary of all sets
has a better cloning-step solution for BioBricks because of the
inclusion of the aforementioned set, which contains by far the
greatest number of constructs of the considered construct sets.
For BioBricks and Gibson cloning, the number of PCRs is not
optimized, so all Raven answers are equivalent to those of the
unoptimized solution.

Next, to demonstrate the power of Raven solutions on an even
larger scale, we used Eugene24 to generate a set of 1,000 or more
variant constructs for five separate types of constructs: DNA
invertase cascade (DIC) counters, toggle switches, repressilators,
transcriptional NOR gates and invertase NOR gates (Fig. 2a and
Supplementary Note). Because it is common for large constructs

to need tuning to achieve function, these sets contain variants
to represent a spectrum of possible function and provide many
opportunities to share intermediates.

To determine one unoptimized solution for each of these sets,
we randomly selected 500 constructs and calculated an unopti-
mized, one-pot hierarchical assembly graph. We repeated this
experiment 1,000 times for each of the five designs to get a distri-
bution for each type of design and found that Raven’s algorithms
were able to select assembly graphs that require significantly fewer
cloning steps than the average unoptimized graphs for all five
designs (P(z) < 0.001) (Fig. 2b). Because these data sets were
made from combinatorial part substitutions, there exist many
opportunities to share cloning intermediates and assembly
vectors using modular overhangs. We observed that our modular
overhang assignment solutions required significantly fewer PCRs
than unoptimized solutions for overhang assignment for each of
the five design types (P(z) < 0.001) (Fig. 2c).

Finally, we determined how Raven’s solutions performed as
a function of the number of constructs under consideration.
We repeated the in silico experiments for the five design types
for variable numbers of constructs. We found that Raven’s
solutions significantly outperformed the unoptimized solution
spaces for both cloning steps and PCR steps (Fig. 2d) at a small
scale of 5 constructs (P(z) < 0.001) as well as at a larger scale of
500 constructs (P(z) < 0.001). As the number of constructs under
consideration increases exponentially, Raven’s solutions for both
hierarchical assembly and overhang assignment also improve
exponentially compared to unoptimized solutions (Fig. 2d).

interactive assembly of genetic constructs
To highlight Raven’s ability to utilize an existing library of
constructs, we used it to calculate an assembly plan for six
repressilator21 constructs using an existing library with an exist-
ing overhang schema. The constructs were designed based on
previously published schema using the CIDAR (http://www.
cidarlab.org/) MoClo library as a resource. Design constraints

table 1 | Raven-optimized and average unoptimized assembly scores for constructing plasmids from the literature

construct
source no.

unoptimized solutions raven solution

rFc10 rFc94 Gibson rFc10 rFc94 Gibson

Bonnet et al.20 6 6.09 45.7 21 3.83 47.7 58 2.67 12.3 34 5 43 21 3 39 54 2 8 34
0.80 1.24 0 0.56 2.07 0 0.59 2.05 0 0.08 0.02 0.5 0.07 <0.01 0 0.13 0.02 0.5

Bonnet et al.19 13 6.81 80.9 23 4.41 116 127 3.27 32.9 55 5 73 23 3 75 104 2 24 55
0.64 2.61 0 0.52 4.50 0 0.50 2.73 0 <0.01 <0.01 0.5 <0.01 <0.01 0 <0.01 <0.01 0.5

Friedland et al.14 5 8.97 89.7 27 4.99 101 125 4.99 33.3 50 6 74 27 3 49 62 2 19 50
0.87 3.49 0 0.59 4.05 0 0.59 2.91 0 <0.01 <0.01 0.5 <0.01 <0.01 0 <0.01 <0.01 0.5

Lou et al.13 191 7.81 482 90 6.15 869 420 4.13 477 449 5 624 90 3 401 266 2 381 449
0.59 23.2 0 0.54 34.4 0 0.36 10.1 0 <0.01 1 0.5 <0.01 <0.01 0 <0.01 <0.01 0.5

Moon et al.17 15 8.70 106 37 4.82 135 140 3.66 38.0 84 6 102 37 3 71 90 2 22 84
0.99 3.03 0 0.58 4.87 0 0.60 3.62 0 <0.01 0.09 0.5 <0.01 <0.01 0 <0.01 <0.01 0.5

Suiti et al.18 23 7.39 125 19 4.87 224 255 3.60 71.4 97 5 121 19 3 171 234 2 55 97
0.63 4.38 0 0.48 7.51 0 0.59 3.99 0 <0.01 0.18 0.5 <0.01 <0.01 0 <0.01 <0.01 0.5

Tabor et al.15 6 7.76 49.2 12 4.61 76.9 98 3.49 23.1 26 5 39 12 3 39 51 2 14 26
0.82 3.56 0 0.58 3.47 0 0.56 2.36 0 <0.01 <0.01 0.5 <0.01 <0.01 0 <0.01 <0.01 0.5

Tamsir et al.16 14 6.30 60.6 15 4.24 84.1 93 2.89 28.8 53 4 56 15 3 59 69 2 21 53
0.53 2.27 0 0.50 4.24 0 0.52 2.71 0 <0.01 0.02 0.5 <0.01 <0.01 0 0.04 <0.01 0.5

All 273 9.28 969 204 6.17 1,566 907 4.36 717 844 6 1,092 204 3 879 797 2 544 844
0.85 23.8 0 0.48 24.7 0 0.51 13.2 0 <0.01 0.99 0.5 <0.01 <0.01 0 <0.01 <0.01 0.5

Number of constructs (no.) considered in each set is shown. Numbers in each set of columns refer to cloning stages, cloning steps and PCR steps, respectively. Unoptimized solutions are
represented by averages (top of each row) and s.d. (bottom of each row). Raven solutions are reported (top), along with the probability, P(z), of selecting this solution randomly using a
statistical z-test (bottom). P values are calculated assuming a normal distribution of assembly outcomes.

np
g

©
 2

01
4

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://www.cidarlab.org/
http://www.cidarlab.org/

660  |  VOL.11  NO.6  |  JUNE 2014  |  nAture methods

Articles

allowed only up to four parts per cloning step, as opposed to six.
The assembly plan for these six constructs required 17 assembly
steps, 2 assembly stages, 0 PCR reactions and 23 shared parts, and
we successfully constructed two constructs without modification
to this plan (Supplementary Fig. 4).

We then selected a subset of the constructs from Friedland et al.14
(representing some of the largest and most complex constructs
in the sets) and constructed them using Raven. We used a MoClo
assembly plan (BBF RFC 94) for the DIC counter constructs,
assuming a library of only template DNA and cloning vectors.
The Raven-designed oligonucleotides from the assembly plan
were used to amplify parts using the original constructs as tem-
plate (Supplementary Fig. 5 and Online Methods), overhang
sites were chosen from a preselected set of 4-bp modular scars
(Supplementary Table 2) and it was assumed that all cloning
steps would have equivalent cloning efficiency. The assembly plan
for all four constructs required 29 steps, 3 stages and 34 PCR
steps (Fig. 3a and Supplementary Fig. 6). We implemented this
preliminary assembly plan as specified by the human-readable
instructions that Raven generated, using standard reaction condi-
tions (Online Methods and Fig. 3a).

This initial plan was not successful. However, Raven has four
primary mechanisms for interactively modifying assembly plans
to circumvent unsuccessful cloning steps. First, Raven can detect
undesirable restriction sites that can be removed with PCR.

Second, intermediate clones flagged for expressing undesirable
genes (such as the flpe recombinase) or other traits (Fig. 3b)
can be biased for or against appearing in an assembly plan
(Supplementary Fig. 7). Third, default cloning vectors assigned
to each assembly stage based on each assembly method may
be substituted. Finally, cloning efficiency as a function of
number of parts assembled per cloning reaction may be modi-
fied from default equivalent-efficiency values (Supplementary
Figs. 8 and 9).

In cases where users have already started a large assembly
but get stuck on unforeseen challenges, they can use the Raven
redesign feature (Fig. 3c) to calculate a new plan. When using
this feature, Raven automatically adds the successful parts into
the library and forbids failed intermediates from appearing in
the alternative solution. When we got stuck on the first plan for
the counters, we used a redesigned solution, which required
seven steps, two stages and two PCR steps (Supplementary
Fig. 10). This plan reused the four successful intermediates
from the initial plan and split up the two unsuccessful inter-
mediates into smaller intermediates. One of these intermediates
was also unsuccessful, so a second redesign with the same cost
was implemented that succeeded in the cloning of all intermedi-
ates (Supplementary Fig. 11).

This third plan, although successful for creating all intermedi-
ates, was not successful for cloning the final constructs. This was

Counter
1,480 constructs

3 2 3 3 2 1 2 2 3 3 2 1 2 3 1 1

Invertase
NOR gate

1,240 constructs 3 2 4 2 2 4 2 3 1 4

Repressilator
1,075 constructs

4 3 4 2 4 3 4 2 4 3 4 2

Toggle switch
1,200 constructs

2 4 3 4 4 3 4 3 1 2

Transcriptional
NOR gate

1,100 constructs 4 4 3 4 2 4 3 1 2

a

d
Counters
Invertase NOR
Repressilator
Toggle
Transcriptional NOR
Cloning steps
PCR steps

ln (number of constructs)

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

ln
(f

ol
d

im
pr

ov
em

en
t)

b

Number of cloning steps

F
re

qu
en

cy

0

2.0 × 10–3

Counters
Invertase NOR
Repressilator
Toggle
Transcriptional NOR
Raven results

0 2,000 4,000 6,000 8,000 10,000 12,000

4.0 × 10–3

6.0 × 10–3

8.0 × 10–3

1.0 × 10–2

1.2 × 10–2

1.4 × 10–2

c

Number of PCR steps

F
re

qu
en

cy

0 4,000 8,000 12,000 16,000 20,000

Counters
Invertase NOR
Repressilator
Toggle
Transcriptional NOR
Raven results

0

5.0 × 10–1

1.0 × 100

1.5 × 100

2.0 × 100

2.5 × 100

Figure 2 | In silico assembly with Raven. (a) SBOL visual representations of the DIC counter, invertase NOR gate, repressilator, toggle switch and
transcriptional NOR gate constructs, indicating the number of parts we sampled at each position and the total possible construct variants after
application of Eugene rules. (b) Cloning steps required for MoClo assembly of a 500-construct subset of each set of 1,000 or more constructs from a.
Asterisks represent the Raven solution; other points represent unoptimized cloning step solutions. (c) PCR steps required for MoClo assembly given
the cloning step solution in b. Asterisks represent the Raven solution; other points represent random PCR step solutions. (d) The fold improvement
of Raven’s solution compared to unoptimized solutions in b,c as a function of construct quantity. Raven’s solutions improve as the number of
constructs per assembly plan increases. PCR steps (dashed) and cloning steps (solid) are shown separately.

np
g

©
 2

01
4

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

nAture methods  |  VOL.11  NO.6  |  JUNE 2014  |  661

Articles

because BBF RFC 94 assumes the use of high-copy plasmids for
all cloning steps. In this case, since it is critical that recombinases
are not expressed, it was problematic to clone the final counter
constructs into high-copy plasmids owing to leaky promoter
behavior. To address this, we forced an extra cloning stage by
requiring the construction of larger intermediates and assigned a
pBAC25 for the final cloning stage (Supplementary Fig. 12).

Using this plan, all cloning intermediates were constructed and
used to build the final constructs successfully (Fig. 3d). Several
of the intermediates incurred mutations as a result of cloning
artifacts, but these were located at internal part junctions and the
flanking junctions needed for future steps remained unaltered.
Therefore, Raven cannot guarantee the production of an exact
target sequence; in vivo recombination events are difficult to
predict and outside the scope of the assembly plan. Moreover, as
long as the necessary restriction sites and part junctions remain
intact, the Raven plan remains valid.

discussion
Because it is not feasible for a human to design hundreds or
thousands of assembly plans manually and even more difficult
to produce efficient and low-cost solutions for such sets, a com-
putational tool to automatically determine these solutions is
needed. And because assembly planning instructions are neces-
sary for liquid-handling robots and microfluidics to perform high
throughput cloning and other automation techniques, the absence
of an automated method to inform a robot which steps to take to
assemble genetic constructs would severely limit the automation
power of a larger tool pipeline.

Raven generates experimentally valid assembly plans, and,
although it cannot guarantee success of any one plan or com-
plete target sequence, it can generate new plans on the basis
of some specific step failures and efficiency data. While these
algorithms have the ability to incorporate feedback of reaction
failures and successes to produce better solutions, they do not
provide any methodology for predicting the success or failure
of specific assembly steps or the construct’s function. It is impor-
tant to note that some standardized cloning protocols cannot
be rigidly implemented to clone all constructs owing to inher-
ent complexity of function of the constructs under considera-
tion: some cloning challenges still must be solved by amending
standard protocols and thus fall outside the purview of a protocol-
agnostic assembly plan.

Finally, formal assembly files can be used to capture assembly
information from previously attempted assemblies. The docu-
mentation of cloning reaction success and failure and of the
path to successful assembly can be accumulated and allow easier
reproduction of published work. This is particularly important
because this information is often poorly documented, which
hinders the ability to build on previous work. Formally docu-
mented assembly planning provides a better avenue for track-
ing this information, and previously attempted assemblies could
be studied to develop new heuristics and bring further insight
to popular molecular cloning methods.

Raven currently supports only six highly used, well-defined
cloning methods, but additional systematic biases and constraints
outside the tool’s core heuristics can be applied to Raven’s solutions
by specifying forced, forbidden, recommended and discouraged
intermediates and specific cloning vectors. Moreover, the princi-
ples of this approach could be expanded and further generalized
to nearly to any cloning method, provided common sub-problem
scoring required by dynamic programming. The generality of the
algorithmic solutions and the breadth of the permitted inputs
allow assembly solutions to be adapted to potentially any DNA
assembly method because Raven broadly suggests how to reuse
DNA libraries to build a set of genetic constructs.

methods
Methods and any associated references are available in the online
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.

AcknoWledGments
The authors would like to thank S. Bhatia, N. Hillson, E. Oberortner and
V. Vasilev for conversations regarding the algorithm development. We also
thank M. Smanski (Massachusetts Institute of Technology), S. Iverson
(Boston University) and the Boston University iGEM team for providing
samples and for conversations regarding MoClo cloning experiments. We would
like to thank the authors of work from which this work was extended and all
alpha-testers of the Raven software. Finally, we would like to thank T.K. Lu
(Massachusetts Institute of Technology), C. Voigt (Massachusetts Institute of
Technology) and D. Endy (Stanford University) for providing samples of the
genetic constructs that were used to implement assembly plans. This work has
been funded by the Office of Naval Research under grant no. N00014-11-1-0725.

Author conriButions
E.A., J.T. and D.D. developed the algorithms. E.A. and J.T. implemented the
algorithms and user interface. E.A. and T.H. designed and performed experiments.

a
1 3 4 5 6M

1.5
1

0.5

2

3
2

b

c
d

1.5

1

0.5

3
2

4

1M 2 3 4

www.ravencad.org

6

Size (kb)

Size (kb)

Figure 3 | Interactive assembly. (a) An initial
assembly plan in the Raven user interface.
(b) A SpeI restriction analysis for initial
cloning intermediates that had expected bands
at 0.5 kb (lane 1), 1.7 kb and 0.2 kb (lane 2),
2.1 kb (lane 3), 1.7 kb (lane 4), 1.5 kb and
2 kb (lane 5), and 3.4 kb (lane 6), with a
2.1-kb vector band (lanes 1–6). Incorrect
bands (boxed in yellow) are seen for lanes 2
and 5. (c) The Raven user interface redesign
tab records failure of these intermediates
and success of all other intermediates, and
generates a new plan. (d) A PstI restriction
analysis for counter 1 (lane 1), counter 2
(lane 2), counter 4 (lane 3) and counter 6
(lane 4). Expected bands at 7 kb, 4 kb and
1.6 kb (lanes 1–4).

np
g

©
 2

01
4

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/nmeth.2939
http://www.nature.com/doifinder/10.1038/nmeth.2939
http://www.nature.com/doifinder/10.1038/nmeth.2939

662  |  VOL.11  NO.6  |  JUNE 2014  |  nAture methods

Articles

T.H. developed standard MoClo protocols and provided materials. E.A., J.T., T.H.
and D.D. wrote the paper.

comPetinG FinAnciAl interests
The authors declare competing financial interests: details are available in the
online version of the paper.

reprints and permissions information is available online at http://www.nature.
com/reprints/index.html.

1. Gibson, D.G. et al. Enzymatic assembly of DNA molecules up to several
hundred kilobases. Nat. Methods 6, 343–345 (2009).

2. Weber, E., Engler, C., Gruetzner, R., Werner, S. & Marillonet, S.
A modular cloning system for standardized assembly of multigene
constructs. PLoS ONE 6, e16765 (2011).

3. Li, M.Z. & Elledge, S.J. Harnessing homologous recombination in vitro to
generate recombinant DNA via SLIC. Nat. Methods 4, 251–256 (2007).

4. Quan, J. & Tian, J. Circular polymerase extension cloning of complex gene
libraries and pathways. PLoS ONE 4, e6441 (2009).

5. Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision
cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).

6. Sarrion-Perdigones, A. et al. GoldenBraid: an iterative cloning system for
standardized assembly of reusable genetic modules. PLoS ONE 6, e21622
(2011).

7. Endy, D. Foundations for engineering biology. Nature 438, 449–453 (2005).
8. Arkin, A. Setting the standard in synthetic biology. Nat. Biotechnol. 26,

771–774 (2008).
9. Densmore, D. et al. Algorithms for automated DNA assembly. Nucleic Acids

Res. 38, 2607–2616 (2010).
10. Blakes, J. et al. A heuristic for maximizing DNA reuse in synthetic

DNA library assembly. ACS Synth. Biol. doi:10.1021/sb400161v
(20 February 2014).

11. Shetty, R.P., Endy, D. & Knight, T.F. Engineering BioBrick vectors from
BioBrick parts. J. Biol. Eng. 2, 5 (2008).

12. Hillson, N.J., Rosengarten, R.D. & Keasling, J. j5 DNA assembly design
automation software. ACS Synth. Biol. 1, 14–21 (2012).

13. Lou, C., Stanton, B., Chen, Y.-J., Munsky, B. & Voigt, C.A. Ribozyme-based
insulator parts buffer synthetic circuits from genetic context. Nat.
Biotechnol. 30, 1137–1142 (2012).

14. Friedland, A.E. et al. Synthetic gene networks that count. Science 324,
1199–1202 (2009).

15. Tabor, J.J. et al. A synthetic genetic edge detection program. Cell 137,
1272–1281 (2009).

16. Tamsir, A., Tabor, J.J. & Voigt, C.A. Robust multicellular computing using
genetically encoded NOR gates and chemical ‘wires’. Nature 469, 212–215
(2011).

17. Moon, T.S., Lou, C., Tamsir, A., Stanton, B.C. & Voigt, C.A. Genetic
programs constructed from layered logic gates in single cells. Nature 491,
249–253 (2012).

18. Siuti, P., Yazbek, J. & Lu, T.K. Synthetic circuits integrating logic and
memory in living cells. Nat. Biotechnol. 31, 448–452 (2013).

19. Bonnet, J., Yin, P., Ortiz, M.E., Subsoontorn, P. & Endy, D. Amplifying
genetic logic gates. Science 340, 599–603 (2013).

20. Bonnet, J., Subsoontorn, P. & Endy, D. Rewritable digital storage
in live cells via engineered control or recombination directionality.
Proc. Natl. Acad. Sci. USA 109, 8884–8889 (2012).

21. Elowitz, M.B. & Leibler, S. A synthetic oscillatory network of
transcriptional regulators. Nature 403, 335–338 (2000).

22. Bhatia, S. & Densmore, D. Pigeon: a design visualizer for synthetic
biology. ACS Synth. Biol. 2, 348–350 (2013).

23. Peccoud, J. et al. Essential information for synthetic DNA sequences.
Nat. Biotechnol. 29, 22 (2011).

24. Bilitchenko, L. et al. Eugene: a domain specific language for specifying
and constraining synthetic biological parts, devices, and systems.
PLoS ONE 6, e18882 (2011).

25. Wright, D.A. et al. Standardized reagents and protocols for engineering
zinc finger nucleases by modular assembly. Nat. Protoc. 1, 1637–1652
(2006).

np
g

©
 2

01
4

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/nmeth.2939
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html
http://dx.doi.org/10.1021/sb400161v

doi:10.1038/nmeth.2939 nAture methods

online methods
Cloning destination vectors. The lacZα fragment was PCR
amplified from a lacZα-containing cloning vector (pMJS2AF,
donated by M. Smanski) and subsequently cloned into three
backbones, depending on the MoClo level: level 0 used pSB1A2,
level 1 used pSB1K3, and level 2 used pSB1A2. DNA containing
the lacZα fragment was used as template for PCR reactions. PCR
reactions with 5× Phusion HF buffer, 100 µM dNTPs, Phusion
DNA polymerase, 5% DMSO, 1 mM MgCl2 (New England
BioLabs, Ipswich, MA, USA) and sterile diH2O. Reactions were
performed using the following parameters: one denaturation
step at 95 °C for 5 min, followed by 30 extension cycles (95 °C
20 s., 61 °C 20 s., 72 °C 15 s.), a final 5 min extension step at
72 °C and then incubation at 4 °C. PCR products over 100 bp
were purified using either the QIAquick PCR Purification Kit
(Qiagen Inc., Valencia, CA, USA) or GenCatch PCR Purification
Kit (Epoch Life Sciences, Sugar Land, TX, USA) according to the
manufacturer’s protocol. PCR products and pSB1K3 and pSB1A2
vectors were digested with SpeI enzyme (NEB) according to the
manufacturer’s protocol using up to 500 ng DNA. Restriction
digestions were purified using the QIAquick PCR Purification
Kit (Qiagen) following the manufacturer’s protocol. Ligation
reactions were performed with T4 DNA ligase (NEB) follow-
ing the manufacturer’s protocol with a 3:1 insert part to vector
backbone ratio.

MoClo (BBF RFC 94) cloning protocol. Each MoClo reaction
had the following contents: 40 fmol of each DNA component
(DNA PCR product or previously made MoClo DNA parts, and
the appropriate destination vector), BsaI or BbsI (BsaI for level 1,

BbsI for level 0 and level 2; NEB), high concentration T4 DNA
ligase (C M1794, Promega, Madison, WI, USA), T4 DNA ligase
buffer (Promega) and sterile, diH2O. Reactions performed using
the following parameters: 25–35 cycles (37 °C 1.5 min, 16 °C
3 min), followed by 50 °C for 5 min and 80 °C for 10 min and
then a hold at 4 °C until transformed. Level 0 reactions were
done for 25 cycles, while level 1 and 2 reactions were done for
25–30 cycles. Transformations were done into Alpha Select Gold
Efficiency (Bioline USA Inc., Taunton, MA, USA), DH5α-Z1 and
epi300 competent Escherichia coli cells. Transformations were
heat-shocked at 42 °C for 45 s and recovered in SOC medium for
1 h at 37 °C, 300 r.p.m.

Primer design. Primers for MoClo (BBF RFC 94) assembly
were designed in the following format for parts larger than 24 bp:
NN-[BpiI recognition site]-NN-1234-part-5768-NN-[BpiI
recognition site]-NN. Forward primers: 5′-NN-GAAGAC-NN-
[overhang sequence]-[first 24 bp of part]-3′. Reverse primers:
5′-[last 24 bp of gene]-[overhang sequence]-NN-GTCTTC-NN-3′.
For parts smaller than 24 bp, annealing primers were designed
that adhere to the preceding format.

Assembly algorithms. All algorithms in Raven are implemented
in Java. The Raven user interface is implemented in JavaScript
using jQuery and Bootstrap libraries. Scripts for recommended,
discouraged, forbidden and required parts are implemented in
Eugene. Automatic graphical assembly pictures are generated
using graphviz libraries and automatically generated construct
glyphs from http://pigeoncad.org/. Pseudocode for Raven algo-
rithms detailed in the Supplementary Software.

np
g

©
 2

01
4

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://pigeoncad.org/

	Interactive assembly algorithms for molecular cloning
	RESULTS
	Algorithm overview
	In silico assembly of thousands of constructs
	Interactive assembly of genetic constructs

	DISCUSSION
	Methods
	ONLINE METHODS
	Cloning destination vectors.
	MoClo (BBF RFC 94) cloning protocol.
	Primer design.
	Assembly algorithms.

	Acknowledgments
	COMPETING FINANCIAL INTERESTS
	References
	Figure 1 Example assembly of the repressilator21 with Gibson assembly.
	Figure 2 In silico assembly with Raven.
	Figure 3 Interactive assembly.
	Table 1 | Raven-optimized and average unoptimized assembly scores for constructing plasmids from the literature

