itk F EFHLD

ZHEJIANG UNIVERSITY MEDICAL CENTER

L0 i 25 4H A AE R AT 184 B AR O 3B A% 2 BUR AL
3l ) N FH

S

B X
HHL KR L




> HARE

> i A

7 & F I RAE

> S HZEET

> BHEEA

RS AT

> MY K AETSNP-Z[

> B4

= 5 4 7 o Ak

b

-CKD#L#



HZERZE (SNP)
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The support of human genetic evidence for approved
drug indications

Matthew R Nelson!, Hannah Tipney?, Jeffery L Painter!, Judong Shen!, Paola Nicoletti?, Yufeng Shen®4,
Aris Floratos®*, Pak Chung Sham>9%, Mulin Jun Li%7, Junwen Wang®7, Lon R Cardon?, John C Whittaker? &

Philippe Sanseau?

Figure 2: Enrichment of target genes for drugs approved in the

United States or the European Union.
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Fig. 1 Manhattan plot summarizing transethnic discovery meta-analysis of eGFR. The y axis shows the -log10 P-values and the x axis shows the
chromosomal positions. The horizontal red line represents the thresholds of P-value =5 x 10—8 for genome-wide significance. SNPs in red are in
previously-identified kidney function loci, whereas SNPs in orange are in novel loci

Hellwege et al, Nature Communications 2019
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1844 & F%  (Chronic Kidney Disease, CKD)

The Lancet
Kidney

CHRONIC KIDNEY DISEASE (CKD) Eeusl

Impact on global mortality”

956,246 | () linD7/

deaths directly L) ; deaths worldwide
related to CKD in 2013 due to CKD

CKD is among the

growing causes of
age-standarized O/O

of all cardiovascular deaths
are attributable to CKD

| 4 1,.207455
3 O cardiovascular deaths were attributed

|ncrease iﬂ # Of to one of the principal CKD markers,

low Glomeular Filtration Rate
deaths from CKD
1990 - 2013

Chronic Kidney Disease

* Based on the results of the Global Burden of Disease (GBD) 2013 Study
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63 (52-71)
26 (-8-50)

47 (15-67)

51 (21-70)

39 (21-52)
54 (19-74)
60 (38-74)
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« Metabolic factors play critical roles in CKD development.
« Metabolic memory or programming:

. 2 8
(@) - Intrauterine nutritional deprivation or periods of
e hyperglycemia will increase kidney disease risk, even after
O several decades of good metabolic control.

 Epigenetic modifications are maintained during cell division.
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MBP: methyl CpG-binding protein
DNMT: DNA methyltransferase
SAM: S-adenosylmethionine

SAH: S-adenosylhomocysteine
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Genome Environment

Interaction J})
‘ P~
™~

Epigenome
\ (sequence variations +environment alterations) /

e

Transcriptome

4

Chronic Kidney Disease
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> 8RR 'SR (DKD)

4

AL - S5 A0 ELAR

Genotype Environment
Methylation quantitative trait (mQTL)
mQR /
h =
Methylation I % .
— Z|lm =

\MWAS SNP Methylation g .

A/A A/B B/B
Phenotype

Sheng et al. PNAS, 2020




AL R T (MWAS)

We defined genome-wide methylation changes associated with four DKD phenotypes: Glycemia,
albuminuria, eGFR, and eGFR decline.

CRIC Study
~500 DKD ~8%10° CpCs x  MWAS
Methylation Phenotype
Glycemia (HgbA1c)

Albuminuria
Kidney function (eGFR)
Kidney function decline (eGFR slope)

Methylation

Phenotype ”




-log, ,(P-value) -log, ,(P-value) -log,,(P-value)

-log,,(P-value)

TXNIP

Hemoglobin A1c

Albuminuria

- FAM110C
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Chromosome
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. PAK®6
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12 1314 15 16
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11
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_ANKLE1
CIQTF1 sRrsFe

17 18 19 202122
ZNF20

17 18 19 202122

. RSPH1
.~ IGFL2

17 18 19 202122

| AL

TXNIP (thioredoxin-interacting protein) plays
an important role in redox homeostasis and a
physiologic regulator of peripheral glucose
uptake into fat and muscle in human.

Uroplakins cover urothelial apical surfaces.
Mice with null mutation of Upk2 are often born
with congenital kidney disease.

Cg17944885 (ZNF20) could be validated in
multiple studies that analyzed blood or kidney
samples.
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« Methylation changes were mostly specific to the analyzed phenotypes.
» Glycemic control showed the greatest overlap with other DKD phenotypes.

Albuminuria Hemogqglobin A1C
NKX6-2

UPK2, MTAS3, TSNAREL1
RNF175 POMT BRD7, SMAD7
TUBGCP3
eGFR eGFR Slope
Hemoglobin A1C Albuminuria eGFR eGFR Slope
single organismal cell-cell wound healing transcription cAMP metabolic process
adhesion GTPase activity morphogenesis cardiac muscle cell
response to drug viral process canonical Wnt signaling apoptosis
histone H2B ubiquitination receptor activity chromatin assembly MAPK cascade
cell chemotaxis plasma membrane lactate protein sumoylation transcription
response to glucose transport mesonephros development protein autophosphorylation
fibroblast migration respiratory electron NIK/NF-kappaB signaling GMP metabolic process
very long-chain fatty acid transport chain PIRNA metabolic process

metabolism regulation of JNK cascade



Relative Methylation of cg16408865

Blood methylation — Slope
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« 171,732 CpG sites were identified as significant mCpGs (CpG site that regulated by
at least one SNP)

mQTL s 3 P =5.65E-216
8 2
?9¢ § (] £a
- 22 —
> £
Al C :3 )
12777 o 2 KRN
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TT CT cC E -2
[e] .
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TIT TIC cic
rs7086070
200
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8 3
» 3
il
o 2 100
b 2
Ll o))
L)
T 50
0.0 ' ' 0
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Genotype
26 SNP~CpG 19 SNP~CPG 27 SNP~CPG 16 SNP~CPG.
mQTL l l l l
110 CpG~ 73 CpG~ 99 CpG~ 120 CpG~

MWAS Glycemia Albuminuria eGFR GFR slope



Normalized methylationcg19078289

MBNL1: the muscleblind-like protein 1 locus

Genotype rs1426383 — Methylation Methylation — Phenotype Expression — Kidney function

mQTL MWAS

(3}

N

w

Relative MBNL1 expression (log,)

P =7.66E-12

Relative Methylation of cg19078289

- P=9.43E-06

P =1.99E-05
ciC CIT TIT 25 50 75 100 0 50 100
rs1426383 eGFR (ml/min) eGFR (ml/min)
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NMHHHEENLHT (coloc)

The posterior probability of each possible configuration
can be calculated:

HO: neither trait has a genetic association in the region
H1: only trait 1 has a genetic association in the region
H2: only trait 2 has a genetic association in the region
H3: both traits are associated, but with different causal
variants

H4: both traits are associated and share a single
causal variant

Usually use PP4>0.8 as cutoff to define co-localization.
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Disease
Gene
GWAS eQTL
mQTL

Variant

DImH-A

Methylation

EQLRe

Strength of association (-log,y(P-Value)

Moloc
GWAS Only
GWAS
eQTL
mQTL
GWAS, eQTL
GWAS eQTL mQTL are
independent

Same causal variants
GWAS, eQTL, mQTL

Chromosomal Location

LA (moloce)

SH3YL1, DIP2B, RHOA, CDC14A,
TAF9, GNAS, LACTB, TSPAN14, DHRS11;
NFE2L2, RAMP3,SLC25A16, OPRLA1, IRF5,
MFHAS1, KCNMA1, ZDHHCS5, SFMBT1,
ATXN2L, DPAGT1, PDZD3, UGT8, BANF1,
RMDN1, SH2B1, TUFM, FARSA, CALR, MUSTN1
HKR1, IBA57, CCDC125, BTN3A2, SULT1A2, HTT,
CR1L, PBX2, TMEM110, EML6, NPIPB7, GSTA2,

ZNF318, C4A,
OR2H2, C4B,
SPATA33,
CYP21A2,

HLA-DRB1, KIAA1683,
ADARB2, METTL10,
CELF1,WDR37,
BTB38, MBD5
THBS3, KATS,
MUC1

NFATCS3,
ACVR2A

MAU2, UBE2H,
FLOT1, C2, A4GALT

Hellwege et al. 2019
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Are methylation and gene expression linked?

S
y
Expression

\
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SNP Gene . I
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: methylation expression

1
mQTL ! NS
h c | e
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SNP Methylation £ I
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Genetic variants can influence gene expression (eQTL) and DNA methylation (mQTL).



A RHEWr: T /REEVAL (MR)

Summary data based Mendelian Randomization Pleiotropic association

Identify methylation and gene expression that mediate the
effect of genotypic variation on phenotype development

»

|

Genotype

Methylation

B — s Tperession
' > Methylation Causality
Methylation mQTL N AA AB BB '¥

. Causal variant

A

Expression

v Methylation Expression
Expression e QL m \ Y Pleiotropy .
{
> . i e
l AA _AB BB N Causal variant ___________________ —
4 Meth)(L{tion Expression
Disease = GWAS

. . . ® Linkage

Causal vari?nt 1 Cauqal variant 2
. Linkage
AA AB BB
Causal variant

Disease




Mendelian Randomization Betal=bzx

Beta2=bxy

Basic rules: Beta3=bzy
Here Z is an instrumental variable Bzy=bxy*bzx

Ex SNP
f: ] + BIZ+ ’-}’IU

If Z associated with X, and X has a causal relationship with Y (the effect of X on Y is causal)

Trait Ex

P
Y=ay+ 3, X+ U
2+ P X+ N ey ~SNP) The slope between Z and Y should be
=ay + Bylar + BZ+yU) + 73U

— 353
=ay+ Bhaa + B3 Z+ (B +7)U ’33 2]
_ Is there slope significant? (the real relationship
as T ﬁ3Z U significantly existing?)

Z should associated with Y, if the effect of X on Y is causal.
Hence, the effect of X on Y is causal

The relationship between Z and Y should be indirect. That is Z affects Y through X.
Z is the instrumental variable and Z represent the genetic variant or a combination of genetic variants. Because the fact that the alleles of a

genetic variant are inherited randomly from parents to offspring, so that the relation of a genetic variant with a phenotype should not be
confounded.
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LACTB: the Serine B-lactamase-like protein

LACTB

o SNP.->CKD (GWAS)
q—
O
SNP_>Methylation |57
ﬁs:i -« (mQTL) |a
o
Q
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@
|l . o
>, ke
— [®)
Ez-z =

HH LACTB
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Position on chr15 (Mb)

Beta of mQTLs
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i LACTB
0.25 _F.".=4.80E-122
0.00(
-0.25
-0.50 -

-0.10-0.05 0.00 0.05 0.10 0.15
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IRF5: an IFN-responsive transcription factor

IRF5

20 . 53757387 -SNP >CKD (GWAS)

15 %zﬁz ogi rs3757387

L PR Tt o 0.2 - IRF5

5 ) o l_—l ‘;: ~ e i . P=1 .32E-57
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SNPRM T8 M B BB PR R (R /NERIEEZR) HIHLA

SNP— B AL
GG —_ 14 IE%» »
., eQTL . GWAS
% AG — “RLIE” B
= . - . ’ - . Z
A/G S | 2 B
I <
= . X .
rs6847587 MANBA GG AG AA GG AG AA
(FHSNP) rs6847587 rs6847587
AA —_— (14 ﬁﬁ »
SNPEE R EMANBAKIFTIEL T _
rs6847587 'F/NEE I Rz 41

Gu*, Young®, Sheng” et al., Science Translational Medicine, 2021
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SNP ~ T/C ‘ g

—-

Gene Expr
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Disease Risk
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eQTL (variant-GE)

Defining regulatory regions

Chromatin immunoprecipitation _




RGO REHEE ALEAE R T B CKDHY R 441 A

Control regions

Tissue Target genes
Cell Type Chromatin EeLE
states . Intermediate
Endoth Protein (Endophenotype)
Genetic w Promoter / miRNA \ Nephrotic
Variant
Podoc HTN i
/ Y / nhancer DAB2 \\ C!’lronlc
CATGACTG ¢ LOH pZ — Kidney
CATGCCTG K level AN
DCT Insulator / /Fluid / Disease
; A overload
Lymph Silencer
Macro Factors
Circuitry /

Genotype Cell-omic Epigenome Gene expression Phenotype



' A A B SH ) 24H e S 7

cluster nCells %
- 1 1,001 229 Endo
- 2 78 0.18 pPodo
- 3 26,482 60.54 pT
- 4 1581 3.61L0OH
- 5 8544 19.53 DCT
- 6 870 1.99CD-PC
- 7 1729 3.95CD-IC
- 8 110 0.25 CD-Trans
- 9 601 1.37 Novell
-10 549 1.26Fib
11 228 0.52 Macro
12 74 0.17 Neutro
- 13 235 0.54 B lymph
-14 1,308 299 T lymph
=15 313 072NK
- 16 42 0.1 Novel2

Park et al, Science 2018



BAENFE (Whole Kidney)

Only 9 putative causal genes were identified.

96 Human kidney samples
Genotype

Affymetrix SNP 6.0 array
649,760 variants

Transcript profile
RNA-seq

Quiality control

(MAF, Missing, HWE) QC and normalization

Imputation

5,135,239 variants
Association testing
cis-eQTL (1 Mb)

17,388 genes

Ko et al, AJHG 2017
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151 human kidney samples

VL

AA AB BB

- =

SNP Gene

/

-compartment-sepcific

674

Tubule-comp

i YlEl B/NERS B /NE (Glom and Tubule)

Qiu et al, Nature Medicine 2018
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eQTLHTHHE T3
(a) “.%"Fﬁvl‘ﬁﬁﬂ%
£8EEIH: Im (Gene Exp ~ SNP dosage + Confounders)
Confounders: age, gender, genetic PCs, and PEER factors (estimated hidden confounders)
(b) Cell fraction eQTLs:

ZRPEEIH: Im (Gene Exp ~ SNP dosage + Confounders)

Confounders: age, gender, genetic PCs, Cell fractions, and PEER factors (estimated hidden confounders)
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Cell Type Pearson’s Correlation Two-sided P-value
CD8T -0.60 1.66E-36
Macro -0.68 1.25E-48
Treg -0.38 2.62E-13
Mono -0.33 1.19E-10
B -0.41 9.57E-16

Two-sided P-value was calculated by t-test (df=354).

eGFR

100

Pearson’s Correlation=0.37, P-value=6.73E-13

PT

Pearson’s Correlation=-0.60, P-value=1.66E-36
0.6 0.6
0.4 = 0.4
0.2 0.2
001 * 0.0
0.00 0.05 0.10 0.15
CD8T

02 04 06
PT

Pearson’s Correlation=-0.61, P-value=3.07E-38

0 25 50 75 100

Fibrosis
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359 human kidneys

9,723 eGenes 9,209 eGenes
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