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(Image from: https://upload.wikimedia.org/wikipedia/commons/d/da/DNA_RNA structure_%28full%29.png) . . i o . . .
(Modified from: https://commons.wikimedia.org/wiki/Template:Other_versions/Protein_structure_(full)#/media/File:Protein_structure_(full).png)
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WA RAR, BRAVEWA FALE A AR WSR2, sk 8573555
SO B A (825 25%), W& T & &A1 T RiZA 1 T#40%, C/ G
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G=0.25 G=0.95 G=0.1
T=025 T=0 T=04

End
or:

Start
?F#EO 10 )

F3:CTTCATGTGAAAGCAGACGTAAGTCA

waue: EEEEEEEEEEEEEEEEEES 111111 | -



SRS RS 9 10133451

Bioinformatics A

27 3L XS 4




EPERZF Rz E2) 4
Bioinformatics Zlg_lj_.l'llzl wjuz_{

BN E RS Z E B CUERZ R R R R FI B R R % DA . A, FEERER/IMS: FE
(Homologous)R— i & . FFIZIE “F¥FE” BIEENHE — MBS HEAKEIR#ES). FLEET, BF
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sioinformatics  o€quence Alignment: in Biology — 72101tk

« The purpose of a sequence alignment is to line up all residues
in the inputted sequence(s) that based on their functional or
evolutionary relationship.
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* Input:
- Two (or more) sequences S1, S2, ..., Sn,
« and a scoring function f.

« Output:
« The alignment of S1, S2, ..., Sn, which has the optimal score.

argmax( f (ali(S,,S,,---,S,))

ali

16
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GAATC GAAT-C -GAAT-C
CATAC C-ATAC C-A-TAC
GAATC- GAAT-C GA-ATC
CA-TAC CA-TAC CATA-C

Scoring function: measure the quality of a given alignment.
« Scoring matrix,
« Gap penalty

17
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« Scoring a substitution

- Measure the likelihood of a given substitution happened in
the real world.
 Substitutions that are more likely should get a higher score
 Substitutions that are less likely should get a lower score

« Scoring Matrices are designed to detect signal above
background, i.e. to detect similarities beyond what would be
observed by chance alone

18
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Transversion

Purine A |G D
Pyrimidine C|T A hypothetical substitution matrix:
\ A |c | T
Transition
A 2 -/ -5 -/
C -7 2 -7 -5
GAATC G -5 -7 2 -7
%piT = T -7 -5 -7 2

-7+2+(-7)+(-5)+2=-15

19
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Amino Acids
Hydroxylic A alanine (ala)

\ Tiny R arginine (arg)
e/ N asparagine (asn)
D aspartic acid (asp)
' i g P —/ C cysteine (cys)
Aliphatic . : Q glutamine (gin)
\ E glutamic acid (glu)
| Acidic G glycine (aly)
' H histidine (his)
| isoleucine (ile)
L leucine (leu)
K lysine (lys)
M metioneine (met)
F phenyalanine (phe)
Positive P proline (pro)
(Basic) S serine (ser)
T threonine (thr)
W trytophan (trp)
Y tyrosine (tyr)

Sulphur _

o i F B
onRInIng

Aromatic

Hydrophaobic

Charged

(Adopted from Prof. Jingchu Luo)

20
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« PAM: Percent Accepted Mutation

» Two sequences are 1 PAM apart if they differ in 1 % of the
residues.

« 1 PAM = one step of evolution

1% mismatch

O\

21
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1PAM
2 PAM

\ 1PAM

« 1 PAM = one step of evolution

« PAM, = two step of evolution = PAM, * PAM,

¢ PAM250
¢ = PAM1*PAM249
o = PAM1250

22
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= Scoring gaps 22,1015

« Gap = an Insertion or Deletion during the evolution.

* Much less frequent than residue substitution, due to the function
constrain.

« Often have a negative score as “penalty” .

[
[

HE

%

o ——
gap = insertion or deletion
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» WEERITD

A C G T
A 2 -/ -0 / =B (Al G NEES =S
C -7 2 -7 -5 B | C| T i
G -5 -7 2 7 Q>
T 7 5 _7 2 EEI ez %3
A= A Do T s\
« HIPNZEAITI57
GAAT-C
C=-ATAC

SR

(-7) +(-5) + (2) +(2) +(-5) +2=-11

25



Bamtormatiee  S€quence Alignment: Enumerate? #2107

GAATC GAAT-C -~GAAT-C
CATAC C-ATAC C-A-TAC
GAATC- GAAT-C GA-ATC

CA-TAC CA-TAC CATA-C

26
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sioinformatics  O€quence Alignment: Enumerate? 101t

- If gaps are allowed in every position and of every length, naive enumeration is
exponential in the length of the sequences.

2n) (2n) 2"

n ) (P Jmn

« For two sequences with 300 letters, 1028 possible alignments exist.
« The visible universe is estimated to contain 1078 ~ 1080 atoms (from: wikianswers)

27
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Bioinformatics  \\/hat is the computational Algorithm?

 The best alignment that ends at a given pair of letters
is the best alignment of the sequences up to that
point, plus the best alignment for the two additional
letters.

Mew Best Alignment = Previous Best # Local Best G G

Score of Best Previous Aignment

( Russ Altman BM1214)

28
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Bioinformatics  \What is the computational Algorithm?

7SH K (Dynamics Programming), —fhAREELEH
B L F 251 (optimal substructure) Bt a) ATt E
ME X

o Kio)A o) BRI ] UM E F OB ROCHERE I E

> R l'ﬂmﬁﬁj\ﬁfrjjﬁ:l:/\ﬂ,*%ixd\ﬂ’] [5] 44~ [o)
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BigxHly BB FAEA 5
Fij) Bx,_;and y, ZIEASHitbeEs
s(A,B)2FASRB(EER)MES; d ESMIES @)

F(0,0)=0

Fi—-1 j—1)+s(x,y,) xLxzly
F(i, j)=max{F(i—1 j)+d x pbxdzs

F(i, j—1)+d y tExIBIZfr

30
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F(0,0)=0

Fi-1, j—1)+s(x,y,) x ELxdEly
F(i, ))=maxqF(i-1j)+d xtagisqf
F(i, j—1)+d y tbBI=a

— F(i—1 j—1) F(i, j 1)

!
hI \S(Xi’yj) d
.

l

Fi-1j)— d—F(,]j)

31
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A |C |G |T
A 2 -/ -5 ! EK A |G ’{\lﬁl%‘éﬁ}_ﬁk%
C 7 2 | -7 | -5 BIE | C T B
G 5 -7 2 -7 \ U2
T 7| -5 | -7 | 2 BESEE-S=3i
i =M VB ps)

- GAAT-C

C-ATAC

</ LN

(-7) + (-5) + (2) +(2) +(-5) +2=-11
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# NJF5 S1: AAG
# NJF5 S2: AGC
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FHKAAG and AGCRYBR{LEE X

| =g sd=s
A 2 7 | -5 7 — )
c |7 |2 |7 |5 A A G
G |5 |7 |2 7
T |7 |5 |7 |2 0

F(0,0)=0

(Fi-1, j-1)+s(x, )
F(i, j)=max< F(i-1, j)+d

F(i,j-1)+d
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FHKAAG and AGCRYBR{LEE X

A |c |c |7 g
A 2 -7 -5 7 §1ﬁ1¥fﬁd:_5
C -7 2 -7 5 A A G
G -5 -7 2 7
MEAENERE 0 —[s — |10 —f15
) 5
F(i-1j-1) (i, i-1) !
' .10
S(Xi’yi)\ Cil il
{F(. 1j) — d—F(i, ) 15
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— T~ —E'r?ﬂzAAG and AGCAYBR L EE X
=R F5rd=-5
A 2 -7 -5 7
C -7 2 -7 5
G -5 -7 2 7 A A G
T |7 ]s ]7 ]2 0 —|-5 — |-10 —-15
Jv' N =
Fi-1j-1) P |7 3 —° °
d G 10 3 (-3 ™1
0. 3) | } } } }
F(i—-1j) > d > (i, j) C 15 -8 -8 6
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— T T FHAAG and AGCHYERILEE XS
= E5rd=-5
A 2 -7 -5 7
C 7 2 -7 5
G 5 -7 2 7 A
T |7 |5 |7 |2 0 —s|-5
i
M N
F(i-1j-1) F(If—l) A - @
s(xi,yj) T
Fii-1j) —d——F(, j)
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S AAG and AGCRYE AL EEXT
A |c |G |T
A |2 7 |5 7 TN HEPd=-5
c |7 |2 |7 |5
G |5 |-7 |2 7 A
T |7 |5 |7 |2 .
TSN :
Y L s
ol 1 54 (5)=-10
F(i-1j) —d i) [0+ 2 = 2
5 Y (5 = -10
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—E'r?ﬂzAAG and AGCHY B EE Xt

A C G T
4
T T T o Zf8nd=-5
c |7 |2 |7 |5
G |5 |7 |2 |7 A A G
— 0 —|-5 — |-10 —-15
L
v < L
i1 A _5 2 > — 8
F(Gi—-1 j-1) F(I’f_l) i l ‘@ \\A
d G 10 -3 -3 *1
s(x;, Yy
Fi-1,j) — d——F(i,j) |C 15 -8 8 6
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—E'r?ﬂzAAG and AGCHY B EE Xt

A C G T
4
15 T s 17| EfEsd=-5
c |7 |2 |7 |5
G |5 |7 |2 |7 A A G
— 0 —|-5 — |-10 —-15
+ <« L
I, ] A -3 2 —|-3 —»|-8
F(Gi—-1 j-1) F(I,f—l) ] l g <
Sx,y,) 4 |G -10 3 3 ~1
J } * : : 4
Fi-1J) —d—FGj) [© 15 -8 8 (6)
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MNiEMAETRZERMELZ L. S16ERRRR— MBS

AAG - /ﬁi A ©
- A G C 0\((5\
A 2|3
AAG_ \\
© K
A -G C ) )

XM FFFIMLEB| B2 BRI FEHITIEN: EREXT
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J. Mol. Biol. (1970) 48, 443453

A General Method Applicable to the Search for Similarities
in the Amino Acid Sequence of Two Proteins

SAUL B. NEEDLEMAX AND CrrisTIay D. WuxnscH

Department of Biochemistry, Northwestern University, and
Nuclear Medicine Service, V. A. Research Hospital
Chicago, Ill. 60611, U.S.A.

(Recerved 21 July 1969)

A computer adaptable method for finding similarities in the amino acid sequences
of two proteins has been developed. From these findings it is possible to determine
whether significant homology exists between the proteins. This information is
used to trace their possible evolutionary development.

The maximum match is a number dependent upon- the similarity of the
sequencas. One of its definitions is the largest number of amino acids of one protein
that can be matched with those of a second protein allowing for all possible
interruptions in either of the sequences. While the interruptions give rise to a
very large number of comparisons, the method efficiently excludes from consi-
deration those comparisons that cannot contribute to the maximum match.

Comparisons are mads from the smallest unit of significance, a pair of amino

* acids, one from each protein. All possible pairs are represented by a two-dimen-
sional array, and all possible comparisons are represented by pathways through
the array. For this maximum match only certain of the possible pathways must be
evaluated. A numerical value, one in this case, is assigned to every cell in the
array representing like amino acids. The maximum match is the largest number
that would result from summing the cell values of every pathway.

42
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EF-Tu and eEF1-alpha _-,-_-_

i — s ___m

elF-2gamma -

IF-2 and elF-5b ey -
[

EF-G and eEF-2 _.-.-
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J. Mol. Biol. (1981), 147, 195~197
Smith and Waterman at Los Alamos, New Mexico

Photo by David Lipman, taken summer of 1980

Identification of Common Molecular Subsequences

The identification of maximally homologous subsequences among sets of long
sequences is an important problem in molecular sequence analysis. The problem is
straightforward only if one restricts consideration to contiguous subsequences
(segments) containing no internal deletions or insertions. The more general problem
has its solution in an extension of sequence metrics (Sellers 1974; Waterman et al..
1976} developed to measure the minimum number of “events™ required to convert
one sequence into another.

These developments in the modern sequence analysis began with the heuristic
homology algorithm of Needleman & Wunsch (1970) which first introduced an
iterative matrix method of calculation. Numerous other heuristic algorithms have
been suggested including those of Fitch (1966) and Dayhoff (1969). More mathemat-
ieally rigorous algorithms were suggested by Sankoff (1872). Reichert ef al. (1973)
and Beyer et al. (1979), but these were generally not biologically satisfying or
interpretable. Success came with Sellers (1974) development of a true metric measure
of the distance betwee{) sequences. This metric was later generalized by Waterman
el al. (1976) to include deletions/insertions of arbitrary length. This metric
represents the minimum number of “mutational events' required to convert one

(http://www.cmb.usc.edu/people/msw/SmithWaterman.html) sequence into another. It is of interest to note that Smith ef al. (1980) have recently
shown that under some conditions the generalized Sellers metric is equivalent to the

44
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F(0,0)=0

FGi—1, j—1)+s(x.,y,)

F@G,j)=max:s F(i—1, j)+d
F@i,j—1)+d

9 0 j—1)

F(i—1 j—1) F (@i ]
o v

S(Xi’ Nd

~\4

F(i—-1j) > d > F(, j)
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FHAAG and AGCHY R B ER EEXT

ALC 16 T =B 4rd=-5
A 2 -7 -5 -7
C 7 2 -7 -5
G 5 -7 2 -7 A A G
T |7 |5 |7 |2
0 .
F(i—-1 j-1) F(hf—l)
s(xi,yj) T
F(i-1j) —d FG, j)
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FHAAG and AGCHY R B ER EEXT
= F 5 d=-5

O[O >
NERGE NI P

sluldlL]o

RS 0 P o)

o| O O] O
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FHAAG and AGCHY R B ER EEXT

ALC 16 T =543 d=-5
A 2 -7 -5 -7
C 7 2 -7 -5
G 5 -7 2 -7 A A G
T 7 |5 |7 |2 0 - 1o 0
S \\\\\k\\: < S~o
0 - f2 -2 10
0 0 0 O h ‘; \
Fi-1j-1) Fi, j—-1) 17
N 0 0 0 0
S(Xi yj) d
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—E'r?jzAAG and AGCHY IR BB EL X

S sHIFmd=-5
A 2 -7 5 =
C 7 2 7 5
B S S A A G
T 7 5 7 >
\
» <
0 o 0 5 ; ‘4
F(i—1,j-1) F(Lf_]_)
S(Xi’yj) d 0 0 0 0
SO l
F(I_l J) > d > F(l J)
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MiERER A (EFRE EFHIREIEZI 077 Lk

A A G

e O\\O\ 0 0
A G A 0 2 2 v\\O
G 0 0 0 Z

C 0 0 0 0
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H—RIFERELIIER

A A G

A
O\ 0 - 0 0

A
A 0 2 2 \\O
G 0 0 0 4
C 0 0 0 0
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F(0,0)=0
F(i—1, j—1)+ s(xi, yj)

F(i, j)=max{F(i—1 j)+d 2 Bk xd
F(i, j-1)+d

F(0,0)=0
F(i_l’j—l)—l— S(Xi, yj)

1, ])= ) 1—1, ] d e _

P 1) = max) BE =1 S

0]
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i

QUERY
SEQUENCE
Nucleic Acid blastn
contcgptual tblastx
:)r;)n:llztions
Peptide/Protein

7 101
DATABASE
Nucleic Acids

— '

— | comepual
t

.__E :)r:;\:gtions

Proteins/Peptides

(Joel H. Graber)
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* E-value: Expectation value

- the number of alignments with a given score that would be expected
to occur at random in the database that has been searched

 e.g. if E=10, 10 matches with scores this high are expected to be
found by chance

E = kmne™
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BEINA, B EEXONEERIEBERFTFEFHEEXLUNITIGE, MABUNEEFFMINEELRE
FIEMEX, Z£U, FIHEUREEEAEEERFCERKREHIFIRE Tho MXENFSE#HL TR IZIE
FFRAE. EIL, BT EHSEDNARYIZE B8 BB REE 2 E & (clusten) #1775 B8 25

(sequence clustering), B IASRIXNERERIONADFHIIIEESEADE, HFEERKRMENEEZEHECD-
HIT. UCLUST#ILinclust, CD-HITFIUCLUST{E A 7 BE AR R 1ME E 5K B (greedy incremental strategy) & SE

MFFINE K.
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1. Distance matrix construction, by pairwise alignment of each pair of
sequences

2. Guide tree construction from the distance matrix

3. Progressive alignment of the sequences according to the branches
In the guide tree

Pairwise Alignment Guide Tree Building MSA by adding
sequences
.............................. 1+2 1
............... 1+3 2
3
........................ 1+4 -2
.............................. S — .~ (4
M ey Ly
3+4
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B R G HBA R ERAAAMMEE R FFIER, T CREAR CURT KR REAE R, FFEm R R
EDNAVE AR o T AL RGBT R L TR . AR CGRRGER B W, Phylogenetic Tree) — et Xf4F
EHUKR RN BEEERR, ROTHEE, BEANRME T EMSHEMELHENERER, THTEREDR
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UPGMA (Unweighted Pair-Group Method using arithmetic Average)

« Algorithm:

- From distance matrix, cluster pair of Units with smallest distance, and
re-calculate new distance for other Units

- Repeat previous step until clusters converge
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« Algorithm:

« From distance matrix, cluster pair of Units with smallest distance, and
re-calculate new distance for other Units

- Repeat previous step until clusters converge
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* Cluster pair with smallest distance, then
- Recalculate distance matrix

A|lB|C|D|E

5 |(2)

cC| 4| 4

D| 6| 6| 6 |
E| 6|6 |6 | 4 K
F| 8|8 |8| 8] 8
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« Calculate new distance using composite Unit(A,B):

 Distance between a simple Unit and a composite Unit is the average
of the distances between the simple Unit and the constituent simple
Unit of the composite Unit

dist (A,B),C = (dist A,C + dist B,C) / 2 = (4 + 4) / 2 = 4
dist (A,B),D = (dist A,D + dist B,D) / 2 = (6 + 6) / 2 = 6
dist (A,B) ,E = (dist A,E + dist B,E) / 2 = (6 + 6) / 2 = 6
dist (A,B),F = (dist A,F + dist B,F) / 2 = (8 + 8) / 2 = 8
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« Calculate new distance using composite Unit(A,B):

 Distance between a simple Unit and a composite Unit is the average
of the distances between the simple Unit and the constituent simple
Units of the composite Unit

A B C D E slclolE
5 | ° C | 4

C 4 4 ST e T

nall I L E 6 6 4

E 6 6 6 4 P e e

F 8 8 8 8 8 Ny



EMEEE R = 7
Bioinformatics ﬂ?‘ 101 2 jZ'JZ-——f

- Second Iteration

AB|C|D|E
K -
D| 6 |6 B
2
D
E| 6 |64 . D
F| 8 (8|88

65



EUERF Fis o
i L0101

Bioinformatics A

* Third Iteration

AB |C|D,E ‘1—11

B

c | @ .
DE| 6 6 )

F| 8 [8]| 8 —

E
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 Fourth Iteration

AB,C | D,E
D.E | (6)
F| 8 | 8
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 Fifth Iteration

ABC,DE

ROCT

TmP S m
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* Proposed by Saitou and Nei in 1987

Masatoshi Nei, Kyoto
prize-winning
evolutionary
geneticist, dies at 92

BY SUDHIR KUMAR AND GREG FORNIA -
5/19/23
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 Rate (can) varies among branches

« minimum-evolution tree: the tree with the smallest sum of branch
lengths

- Pairing sequences based on the effect of the pairing on the sum of
the branch lengths of the tree
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 For each node i the distance from the rest of the tree is
estimated by

r=———o

i dik
» Choose the node i and j for which Dj = dj —r,— r; is smallest
(neighbors)

« Compute branch length from i and j to ij

1 1 1 1
di G :Edij +§(ri -6), dj =54, +§(rj - 1)
« Compute the distance between new clzuster and each other

cluster
d, +d; —d;
(ik — 5
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Rl

7 101
R

i

A B C D E F G r

A NA 93.0
B 63 NA 80.8
C 94 79 NA 87.0
D 111 96 47 NA 96.0
E 67 16 83 100 NA 84.8
F 23 58 89 106 62 NA 88.0
G 107 92 43 20 96 102 NA|[ 92.0
G

Start from the star-like tree .

Calculate T
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Neighbour joining algorithm(2)

A B C D E F G
A NA| -110.8 -86.0 -78.0| -110.8| -158.0 -78.0
B NA -88.8 -80.8 | -149.6| -110.8 -80.8
C NA| -136.0 -88.8 -86.0 | -136.0
D NA -80.8 -78.0| -168.0
E NA| -110.8 -80.8
£ NA| -78.0
G NA
Calculate Dij , D and G are the closest
Calculate the branch lengths of D and G
da,dg =1ddg +1(rd — 1) _1, 20 +1(96—92) =12
: 2749 "2 2 2
1

1 1 1
dg,dg=§dd,g+§(rg—rd)=E*20+§(92—96)=8 s



BET Rz K N . s
B &= Neighbour joining algorithm(3) P01

A B C E F DG r
A NA 86.5
B 63 NA 75.0
C 94 79 NA 95.0
E 67 16 83 NA 79.0
F 23 58 89 62 NA 81.5
DG 99 84 35 88 94 NA| 100.0

Join D and G, calculate the distances [i <

A
F
\ B
~
from DG to other nodes //DG
7/
D
E
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Neighbour joining algorithm(4)

Rl

7 101
R

i

A B C E F DG
A NA| -98.5| -87.5| -98.5| -145.0| -87.5
B NA| -91.0| -138.0| -98.5| -91.0
C NA| -91.0| -87.5| -160.0
E NA| -98.5| -91.0
. NA| -87.5
DG NA

Calculate Dij , C and DG are the closest
Calculate the branch lengths of C and DG

c = 15
dg = 20
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A B E F CDG r
A NA 77 .33333
B 63 NA 67.00000
E 67 16 NA 71.00000
F 23 58 62 NA 72.33333
CDG 79 64 68 74 NA| 95.00000
G A
\
}DG B
Join DG and C, calculate the distances [i / CB
from CDG to other nodes D ) =
C
E
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Neighbour joining algorithm(6)

Rl

7 101
R

i

A B E F CDG
A NA| -81.33333| -81.33333| -126.66667| -93.33333
B NA| -122.00000| -81.33333| -98.00000
E NA| -81.33333| -98.00000
F NA [ -93.33333
CDG NA

Calculate Dii |, A and F are the closest

Calculate the branch lengths of A and F

a=14
=9
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B E CDG AF r
B NA 64.5
E 16 NA 68.5
CDG 64 68 NA 98.5
AF 49 53 65 NA 83.5
A
G \
\ ! _F
}DG -
R AF
Join A and F, calculate the distances I'i /' cp
from AF to other nodes D )/ B
C
E
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Neighbour joining algorithm(8)

BE

#1101
71011

i

Calculate Dij, B and E are the closest

Calculate the branch lengths of B and E

b =06
e = 10

CDG

AF

NA

-117

-99

-99

NA

-99

-99

CDG

NA

-117

AF

NA
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Neighbour joining algorithm(9)

Rl

7 101
Rz ——

i

CDG

AF

BE

CDG

NA

123

AF

65

NA

108

BE

58

43

NA

101

Join B and E, calculate the distances
from BE to other nodes and [
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CDG NA -166 -166
AF NA -166

Calculate Dij, AF and CDG are the closest
Calculate the branch lengths of AF and CDGG

A
cdg = 40 _
af = 25 DG ~

CD
Join AF and CDG B
Finally join BE and CDGAF D/ BE
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SRETER TR/ B SRR BT

BT HR B A AR, R A R T RO AP, REliE S A Aas T AT
FIRIREHREE, COAERATH S DRI AN =EEERTT T 2 N

EHAS— IR, FET IR B TR YA s A o o PR B, IX BARA BT 7 Ab B AR, HE T T
FEAVH ST R . BRI, SR 7R EER A A0 AT T, T DL B SR A a0 T s K 18T 203 (Maximum
Parsimony, MP). & AKfLSRE(Maximum Likelihood, ML) 3T FF14RE ) 3 512
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=27

Helix

B-form

Z-form

DNA

 HEEEN

IO TINSII

Stem loop
Pseudoknot

Stem loop Pseudoknot

Histone
protein

(Image from: https://upload.wikimedia.org/wikipedia/commons/d/da/DNA_RNA structure_%28full%29.png)

(Modified from: https://commons.wikimedia.org/wiki/Template:Other_versions/Protein_structure_(full)#/media/File:Protein_structure_(full).png)

7 101
B ——

i
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Caenorhabditis elegans chronosone III, complete sequence.

z, = (A, + Gp) — (Cn +Tp)
Yn = (An + Cn) - (Gn + Tn) EEEEE ﬂg——?
zn:(An ‘I'Tn)_(cn"‘Gn) : 060

n=20,12,...N

/ curve:

KEKZKBFER T T1994F1R £ DNAFRFI N Z i 21218,
WER{E—DNARS ] FtE— B — 3 = A 2R o~, M
iR 7 — % AJLEIZE T A0 T DNARS I FTIR R .
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(es] (&) (m<) (e () () Beesd fosd fusd (]

INPUT AT ITERATION K = e i
T GA K [Ik_\‘m == - J

MPT only

i
HE]
g3

W
|
—
|

Fine-tuned model
el Tl ulTul pl el bl

T

‘l Iy.‘]: ,:]:xrhk'-W‘i"'I’

re
»

—-A.03 QANSCMED—m
i [
- —
N F
oleldl|B
1S3
1 _
=l E HIE

MPT + CT

EALERRESREF, T Hone hotFZMBBELARTRE
FFol. AL RAERSE, MmEERELE,

(Image modified from http://www.lix.polytechnique.fr/Labo/Theo.BOURY/pdfstorage/Abstract]DSE2023.pdf) 87
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r G
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fm° 777
G AT GAACCTAGGACTSGT
N
()
DNA sample l
Reference genome '
seguence
INSERTION SNP DELETION
(heterozygous) (heterozygous) (homozygous)
Deleted
region
Allele 1

Allele 2 \/

(Image modified from https://www.sevenbridges.com/wp-content/uploads/2016/12/Graph|G-02.png)

- FENERAFIRTHEZBEEAGUEFTHE, XMIDEZRAEN, EXT
KTRETFNERNERNBLENT —ENFRME.

+ EIEEREYH(Graph genome)RBEENF&KT, ERANENEFMENEFEB
o UGEIE BN T /. flan, ERHT Ry URERERARHNAREFS
FESRRF, malRrXERRZENARSERETN, BEXMMTL,
ERAREESEHMEARRAPNER. B REFEREN. 88
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FEENM: BREREDFEREF)
- RLE: IREMERFE "mRSdE. FEEH" ANER
- BT : AREESIANKEHE

REERN: REBFMESHZE, HEREHAESEIMEE

- A TIDGRIR)” AF: FRFHEVERFEREE, L1/ ANER/ ZERF

SAE
LA K" R ERT, ARSEEFELEIA
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