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] Sequencing techniques e

Genomic sequencing: (DNA)

WGS, WES, Single-cell Genomic Sequencing

r N
Transcriptomic sequencing: (RNA)

\TotaI—RNA—seq, MRNA-seq, small RNA-seq, spatial RNA—seq)

Epigenomic sequencing: (Modifications)
DNA-methylation (WGBS, RRBS, MeDIP-seq)
Histone-modification (ChlP-seq, CUT&RUN, CUT&Tag)
Chromatin accessibility (ATAC-Seq, DNase-seq, NOMe-seq)



RNA-seq

Within a single person, all cells share
the same genomic sequence. Why do
some cells become muscle cells, some

cells become liver cells and verve cells.

--- Gene expression

RNA sequencing (RNA-seq) is a powerful technology that has
revolutionized the study of transcriptomes. It provides a
comprehensive view of gene expression and RNA biology,
enabling researchers to address a wide range of biological

guestions.

Why should we do RNA-seq?

COMMON CELL TYPES

ctem cells infes’rir;al cells blood cellg

muscle cells liver cellg herve ceIlS
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- How to do RNAseq ?



RNA-seq

How to do Transcriptome (RNA) sequencing?

A Tumor Sample RNA Rapid Library

. Construction and QC
preparation

Amplification
|

-
Sequence-ready fragment

Step 3

Step 1 Step 2

60x Sequencing
and Preprocessing

Step 4

Automated Analysis

Chromosomal gain or loss
Translocations
Gene mutations

Step 5

Genome Report

Step 6




I 01 Sample preparation

T f cell death
ypes of cell dea Oa o | Viable cell
HEFETh

Stepl: Sample preparation (Purity, Quality) "
mo IEH: R

Step2: RNA extraction
Step3: Sequencing library preparation

Step4: Library sequencing

Step5: Sequencing reads analyses u;":ag““e i
Aponptosis Autophagy Necrosis

RNA is unstable, avoid degradation !!

Sample Type Ensure the correct type (e.g., blood, saliva, tissue, buccal swab) based on study needs.

Use sterile collection tools to prevent contamination.

Avoid Contamination . -
Use gloves and clean workspaces to avoid contamination.

Labeling Clearly label each sample with a unique identifier to prevent mix-ups.

Follow proper storage protocols
Storage Conditions _ . N o
(e.g., -80°C or liquate nitrogen for RNA samples, room temperature for stabilized saliva kits).

Avoid Degradation Minimize exposure to heat, light, and nucleases to prevent RNA degradation.

Transport Maintain appropriate temperature and conditions during transport to preserve RNA integrity.




. (2 RNA extraction e

Stepl: Sample preparation (Purity, Quality)
Step2: RNA extraction (Integrity, concentration, No degradation, yield)

Step3: Sequencing library preparation

Guanidine RNAIn //

Step4: Library sequencing i

‘A

y v
|| thiocyanate-phenol ]Chloroform aqueous / / Isopropanol ‘ Water
‘ (TRIzol) \ ‘ phase“// \ |
. H ~ ,v//
Step5: Sequencing reads analyses < | Q| Q Q| Q Q |
! N\ N L \ S X N
N\ A =) N y 3 : < i i
| | | |
— — —f — —l
‘\ ’ Homogenize ‘ Incubate & [ T Transfer aqueous ) Centrifuge & | | —
‘,«“ / centrifuge \/ phase to new tube \ /‘\" remove supernatant ‘\ \ ‘,;]«‘
/ ‘c“ \ // \ ¥ /
\ 4— Cell pellet v / A V/ \ #— RNA pellet \")

Cell lysis and Addition of Isolation of the RNA- Precipitation Drying of Resuspension
sample preparation chloroform containing aqueous phase of RNA RNA pellet of RNA pellet
RNase-Free
@‘, #~ Carrier RNA Water

L L KL
| ] Use DNase treatment to remove

— H nd Bad=Radg contaminating genomic DNA
_

Ethanol
(96-100%)

Lysing Binding Washing: Eluting RNA
1XWash Bufferz Storage-70°C
2XWash Bufferz



. (2 RNA extraction e

2.1 RNA quality

e N
.2
RNA Integrity Number (RIN) 5%8‘ RIN 10 2175 RIN 6
is a critical step in assessing the quality of ¢ 50 512
RNA samples. =0 . = 080)
'Igl- 3 0.25-
L. . . X . 0.004~ : %
*Intact RNA samples show distinct peaks corresponding to YT X T4 35 34 30 44 49 %1 5 &1 6
. . Time (seconds) Time (seconds)
the 28S and 18S ribosomal RNA (rRNA) subunits.
o 0.8 3.5
Interpretation of RIN Values 5 05 i 200 iz
*RIN 2 9: Excellent RNA integrity, suitable for all downstream £ 0 20
applications (e.g., RNA-seq, qPCR). =03 2 10!
-7 < RIN < 9: Good RNA integrity, suitable for most downstream | gl o
applications. 24 29 34 39 44 43 54 59 64 69 19 24 29 34 39 44 43 54 59 64 69
5 < RIN < 7: Partially degraded RNA, may affect sensitive Y Time (seconds) Time (seconds| Y

applications (e.g., RNA-seq).
*RIN < 5: Severely degraded RNA, not suitable for most
downstream applications.



. (2 RNA extraction e

2.1 RNA quality

150W hela 2%PFA 14.5 h
150W hela 2%PFA 1 h
150W hela fresh

Hela fresh RNA frozen
FFPE-1

FFPE-2

1. 150W hela 2%PFA 14.5 h
2. 150W hela 2%PFA 1 h
3. 150W hela fresh



I )3 Library preparation e

Stepl: Sample preparation (Purity, Quality)

Step2: RNA extraction (Integrity, Concentration, No degradation, Yield)

Step3: Sequencing library preparation (total RNA-seq, mRNA-seq, small RNA-
seq, Ribo-seq, circRNA-seq, single-cell RNA-seq, Spatial RNA-seq)

Step4: Library sequencing

Step5: Sequencing reads analyses



Bl ()3 Library preparation

CRNA ncRNA
coding RNA Non-coding RNA Transcribed RNA with a structural,
s functional or catalytic role snoRNA
| INCRNA 1RNA

mRNA
Protein-coding RNA

RNA RNA Small non-coding with roles in
Incl. RNAthat || Foundin nucleolus, RNAinvolved || chromotin structure
form part of the involvedin in regulation and imprinting

spliceosome modification ¢
: of IRNA of expression

tRNA
Transfer RNA

rRNA

Ribosomal RNA pﬁRNAS

- RNA l I 0
SnRNA sno RNAI Other N
Small nuclear Small nucleolar RNAinterference | [Including large RNA (X—//
pri-miRNA

Participate in ANA IRNA
protein synthesis ; : m ]
HRREERE MicroRNA Small interfering RNA
—  Small RNAinvolved Active moleculesin
inregulation RNAinterference
of expression

AQ%"‘ 3ET» ~ U=

mIRNA pools Pseudogenes
CircRNA
- L]
Cap
@ o T ey
%
L
Jis MRNA

IncRNA



Bl ()3 Library preparation

3.1 Total RNA

rRNA depletion

/\

Barcode

- 4

Rd2 Index

1) rRNA deletion

2) RNA fragmented and primed

3) First strand cDNA synthesized

4) Second strand cDNA synthesized

5) 3' ends adenylated and 5' ends repaired

6) DNA sequencing adapters ligated

7) Ligated fragments PCR amplified

Advantages

« Captures both poly(A) and non-poly(A) RNAs
(e.g., IncRNAs, circRNAs, viral RNAS).

v Works well with low-quality or degraded RNA
samples (e.g., FFPE, plasma RNA).

Limitations

X More complex and costly than poly(A) selection.

X May retain some rRNA contamination.

Common Kits: NEBNext rRNA Depletion Kit, lllumina
TruSeq Stranded Total RNA Kit



I )3 Library preparation e

3.2 MRNA
PolyA enrichment Advantages
T + Suitable for high-quality RNA samples.
isess § N + Provides a cleaner transcriptome profile (reduces
ekt oling. ) semtos saumlopsifio i rRNA and non-coding RNA contamination).
g T v Best for differential gene expression analysis.
i i Limitations
. X Cannot capture non-poly(A) RNAs (e.g: long non-
rowrteion § - pprmia coding RNAS).
—-— X Not ideal for degraded RNA (e.g., FFPE samples).
PR § S e Common Kits: NEBNext Poly(A) mMRNA Magnetic

"ii

— G ——
— Q—

i Isolation, lllumina TruSeq Stranded mRNA Library Prep

deep sequencing Klt



I )3 Library preparation e

PCR Enrichment P5

3.3 Small RNA .. Ps

microRNAs (mIRNAs), small interfering RNAs (siRNAs), and
piwi-interacting RNAs (pIRNAS) s

e
BC PT
. . — B — 3 . 5 7
R - . o —'—'BG - =1
- EC PT
RT Primar
App e 37 Adaptor
3° Adaptor Ligation — 5 Adaptar .
5 .
. g} 5 App = 1 &S Barcode (BC) 3 = . 5
5 5 —— 5" App = 3" S PS5 Primer
&= P7 Primer g e — i= 5 -
g k] S ===
Primer Hybridization *
O . 1" 5" App — "
& 5
d 3: 5 e 1 5 App = 3"
5 5 5 5 — 3
== =5
b — e 5 "
. - e - 5 ==
5" Adaptor Ligation e — i g a
5" 3 N3 5 fipp ="
o —_— 1 - d : 5 e
o —. 5 s I 5 App _ — gl
5 5 5 3 —_—=x
5: —— ._= 3 5 e
O — 5 7 e
First Strand cDMA Synthesis
5 T
—-— L 5 [

- [

F— ::: - SIZE Se|eCt|0ﬂ (140'160 bp)

(Gel or Bead-Based Purification)



I )3 Library preparation e

Cell type O
of interest
3 4 RI b 0-S eq RI BOSOM E | In vivo capture of translating ribosomes and mRNAs, lysis

Y N\

a Ribosome profiling b mRNA-seq

Larga T AAAAAAAAAA AAAAAAAAAA
subunit |
‘ Q—( 3’ ~ 3/ G\AAAAAAAAA T " T AAAAAAAAA
{3 ~% 3/ ~~—AAAAAAAAAAA T " — AAAAAAAAAAA
mRNA Q\/@'\—*O_\AAAAAAAAAA T " T AAAAAAAAAA

L 4 Ll
WAAAAAAAAAAAA e T T AAAAAAAAAAAA

| Random fragmentation

Small subunit
1| Nuclease treatment

N - T - T AAAAAAAA
e T e ST o M

Ry e - Ribosome e
Sy T ey SR ; — = - AAAA
—. footprints N T S T T AAA
— S— — O et o et AAAAAAAAAA

Ribosome profiling (Ribo-Seq) is a specialized RNA
sequencing technigue that captures actively translated

| Library generation |

| Library generation |

| Deep sequencing | | Deep sequencing |

MRNA fragments protected by ribosomes. This method i 3
provides insights into translation dynamics, ribosome 2
: : . EE a
occupancy, and protein synthesis regulation. H \ < ¥
2 8 |5/ leader m E
Al Codingregion A Genomic position *
AUG Stop 5’ transcript end 3’ transcript end
Genomic position (often indicates (often indicates

transcription start site) transcription stop site)



I )3 Library preparation e

Collect tissues or cells RNA isolation
FEINE

3.5 circ-seq: Circular RNA Sequencing Yy O
. A OSe
7 rRNA O
Applications of circRNA-Seq rRNA depletion l
RNase R digestion linear RNA O
CircRNA Identification — Discover and characterize novel S—— O |
circular RNAs. —_—1_———
Differential Expression Analysis — Compare circRNA SR —— [
expression across conditions. , ,
dUTP incorporation l
CircRNA-miRNA Interaction Studies — Identify circRNAs ==
Adenosine tailing with A l
acting as miRNA sponges. el A
. . . Adapter ligation
Cancer and Disease Biomarker Discovery — Explore S T_U_U_ﬁ K g
A T
CWCRNA rOIeS |n d|SeaseS dUTP Strand degradation l
> g
PCR l
\

lllumina sequencing

Experimental validation
Functional testing <= Bioinformation analysis



I (4 Library sequencing

Stepl: Sample preparation (Purity, Quality)

Step2: RNA extraction (Integrity, Concentration, No degradation, Yield)

Step3: Sequencing library preparation (total RNA-seq, mRNA-seq, small RNA-

seq, Ribo-seq, circRNA-seq, single-cell RNA-seq)

Step4: Library sequencing (SE, PE, Read length, Data throughput) J

£ e i
/

Step5: Sequencing reads analyses




I 04 Library sequencing e

4. Library sequencing

Selection Guide:

—> —_—> ! i

*SE: Suitable for simple applications like small RNA y \ ‘ \ /( . -

Sequencmg Or ChlP—Seq Fragments Add adaptors Attach to flowcell

*PE: Preferred for genome assembly, RNA-seq, whole- /ﬁ N 7?{ iR 7I/'| . ||_ I

exome sequencing (WES), and structural variant detection. P R Lo

/ ® g/

L

*PE150 is the most widely used mode for WGS, RNA-seq, il 7 . $ —\Ji 0 ®®

and WES. | e

*PE300 or PE6OO is best for microbiome studies (16S rRNA, Clusterformtin ) ®e/

m eta g e n O m | CS) . Sequencing Signal scanning



05 Data Analyses e

Stepl: Sample preparation (Purity, Quality)
Step2: RNA extraction (Integrity, Concentration, No degradation, Yield)
Step3: Sequencing library preparation (total RNA-seq, mRNA-seq, small RNA-

seq, Ribo-seq, circRNA-seq, single-cell RNA-seq)
Step4: Library sequencing (SE, PE, Read length, Data throughput)

Step5: Sequencing reads analyses (QC, Alignment, Transcript Quantification,

Comparison)

Counting reads associated with genes

Statistical analysis to identify

differentially expressed genes



05 Data Analyses e

5.1. Quality Control (QC)

@Per base sequence quality

To remove low-quality reads and adapters S A -
38
36
34

Tools: 2
*Trim Galore / Cutadapt: Removes adapters and low- .
quality bases. N
fastp: Performs trimming, quality filtering, and basic QCin 2
one step. 12
Filtering criteria: .

12

*Remove low-quality reads (Phred score < 20 or 30)
*Trim adapter sequences
*Discard very short reads (e.g., <30 bp)

[T S T S« B = 1]

1 23 4586 7 89 1518 30-34 45-49 G0-64 75-76 90-94 105-109 120-124 135-139 150
Position in read (bp)



05 Data Analyses e

5.2. Alignment Map sequencing reads to
the transcriptome/genome

Reads are aligned to a reference genome or transcriptome to
determine their origin. -

Tools: ——_—
*STAR: Fast and accurate splice-aware aligner.

H\“lllll

—»>
*HISAT2: Efficient for large-scale datasets with a small memory - Eanil—
footprint. Intron
«Salmon / Kallisto: Pseudo-alignment for rapid transcript
guantification.
Key Metrics: Map Map again

-Mapping rate: Percentage of reads that align to the genome. _MMP1 s MMP2

*Multi-mapped reads: Reads aligning to multiple locations (e.g.,
repetitive sequences).

RNA-seq read

exons in the genome




05 Data Analyses e

5.3. Transcripts quantification and Normalization

To compare gene expression across samples, normalization is
required to correct for library size and sequencing depth.

Tools: Dig ™ o

-FeatureCounts (Subread package): Counts reads o :: _
mapped to genes. oy : -
*HTSeq-count: Counts reads in exon regions for gene- Rt ™ -

level quantification. Rz i -

R3 1

*Salmon/Kallisto: Directly estimates transcript-level i st -
expression from raw reads (without alignment).

Gm3383 Gm10801 Gm10800 Gm21738

Output Format:

*Raw counts: Used for differential expression analysis.

*TPM (Transcripts Per Million reads): Normalized expression level.

‘FPKM/RPKM: Normalization for gene length and library size (less preferred than TPM).



05 Data Analyses e

5.4. Comparison (Bulk, Fold Change & P-value)
Find the Differentially Expressed Genes (DEGS)

02. Heatmap of DEGs 03. Gene Ontology Analyses

Vehicle ADM CGRP Treatment
__!

GO:0004674 protein serine/threonine kinase activity
G0O:0004904+ interferon receptor activity

G0O:00041154 3' 5'-cyclic-AMP phosphodiesterase activity
GO:0004112 cyclic-nucleotide phosphodiesterase activity
G0O:00084434 phosphofructokinase activity

GO:0030695- GTPase regulator activity

G0O:00041144 3' 5'-cyclic-nucleotide phosphodiesterase activity
G0:00305514 eyclic nucleotide binding

G0:00046914 cAMP-dependent protein kinase activity
== 0 1 2 3 4

: -log,, (p-value)

01. Volcano Plot

- ~Ramp3
30+ = Ets1 - —jfngr1

— / Rapgefr2
=1 — Crem

Yu Hou et al., Nature, 2024



] Take Home Message e

RNA-seq

Stepl1: Sample preparation (Purity, Quality)

Step2: RNA extraction (Integrity, Concentration, No degradation, Yield)

seq, Ribo-seq, circRNA-seq, single-cell RNA-seq)
Step4: Library sequencing (SE, PE, Read length, Data throughput) (Optional

Step3: Sequencing library preparation (total RNA-seq, mRNA-seq, small RNA-

Step5: Sequencing reads analyses (QC, Alignment, Transcript Quantification,

Comparison)

Statistical analysis to identify

differentially expressed genes



Il What can we do with RNAseq? I



S e o A

RNA-seq

> § 5

Quantify gene expression ‘ Extract RNA

Discover differential expression féﬁﬁw ; § pre
|dentify novel transcripts and splicing variants ~ - Yy
‘ Select polyA tails

|dentify genetic mutations
Allele specific gene expression w’w

Support biomarkers and drug target ‘ Convert to double
stranded cDNA

‘ Sequence




I (1 Quantify Gene Expression I

total exon reads

RPEM =

B 1. Quantify Gene Expression mapped reads (millions) * exon length (KB)
RNA-seq measures the expression levels of all RPKM Examble
transcripts (MRNAs, IncRNAs, etc.) in a sample, P
allowing researchers to identify which genes are
active and how much they are being expressed. Gene A 600 bases Gene € 1400 bases
RPKM =12/(0.6*6) = 3.33 RPKM =11/(1.4*6)=1.31
—— — —_—— = — e —
Sample 1 =212 C=24 C=11
N =6M
Sample 2 —_ — —_— — —_— — —
C=19 C=28 C=16
N =8M
RPKM = 19/(0.6*8) = 3.96 RPKM =16/(1.4*8) = 1.43

Output Format:

*Raw counts: Used for differential expression analysis.

*TPM (Transcripts per million mapped reads): Normalization for library size

*FPKM/RPKM (reads per kilo base of transcript per million mapped reads): Normalization for gene
length and library size (less preferred than TPM).



I (1 Quantify Gene Expression I

1.1 Gene expression

GENE EXPRESSION
As of the latest annotations (e.g., from GENCODE, Ensembl, and

RefSeq), the human genome is known to contain approximately:

«~20,000 protein-coding genes

*Tens of thousands of non-coding RNA genes, including:
« Long non-coding RNAs (IncRNAS)
« Small nuclear RNAs (SnRNASs)
* MicroRNAs (miRNAS) i
+ Ribosomal RNAs (rRNAS) ™
* Others

TRANSLATION




I (1 Quantify Gene Expression I

1.2. Dynamic gene expression

Heatmap

Relative expression (FPKM)

@ anti-CD3 + anti-CD28 4509
nmee 1 =
0hr 72 ’

Naive Ramp3 expression dynamics

anti-CD3 + anti-CD28 + IL-12 (T T T T T T T T Time
mrir r i1 I
@om 72’

Naive ThO

anti-CD3 + anti-CD28 + IL.-4
@ mrr r riri 1 ﬁ @
0hr 72

Naive

8 -~ Calcrl =— Ramp3 2.5

—2.0

=19

=70

Th1
—-0.5

Th2

e o, T . R L, R B R
0102 0508 13 18 20 23 32 48 54 60 66 72
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= |
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I (2 Differential Gene Expression

& 2. Discover Differential Expression

By comparing RNA-seq data between different conditions
(e.g., healthy vs. diseased, treated vs. untreated), you can
find differentially expressed genes that may be involved in
specific biological processes or diseases.

sarmphe A sample B
mMapping against
reference genome
samiphe A
reference gaenome
= I e — i =
samiple B




I (2 Differential Gene Expression I

2.1. DEGs between two groups

A C 800 -
Apex Base g
Spearman Correlation of Read Counts (a';a fﬂ
B 600
[}
o o -
~ 1 o o w
QQ\/ é{\/ Q‘(@ QQ\Q\ %‘ 400 |
1663 670 2
(5
3‘0:
PFIMG0_2 b, 0T
£
> 45
0 B
up down
B Base VS Apex D
PFIM60_1
w0 - 20

04

-04

PFI_2

-20

-log10(pvalue)

PFI_1

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000 o

o W o > > >

10 5 0 5 10 o o
§ 85 8 8 8
log2(FC) R NS S O AR Y



I (2 Differential Gene Expression I

DMNA damage checkpoint - @
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I (2 Differential Gene Expression

2.2. DEGs among groups

PCA: Principal Component Analysis

Naive T cell

|
TGFB1 TGFB1 IL-18 IL-12
IL-6 IL-6
IL-23

40

PC 2: 14% variance
(@]
|

_40 —

T,0 npT 17 pT 17 T

-80

o
[ "1 )
..\
I I I I I I
-150 -100 -50 0 50 100

PC 1: 71% variance

Treatment
T,0

@ Treg

® npT 17

® pT,17

® T




I (2 Differential Gene Expression .

2.2. DEGs among groups

a
- Late blastocyst
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I (2 Differential Gene Expression I

2.2. DEGs among groups

- T O Control [l Bach2 KO
. e — = npTh17 W pTh17
Clustering e :
Ceré —— —
Irf8 : -'I
5 o Sat1 ]
& & 117f o
& e ' — — —
p — ]
& Lamp1 . == o
& Ikzf1 [2[ =
Runx3 e
IMRO0_WC_totalRNA2 — :_?_
Cel3  Pdedi —_— - e —
Ifngrt  Rorc | | = = ==
IMR90_WC_totalRNA1 Haver2 Ccl5 all — :g:
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Ifitm3 f]'ng — — ¥ ———— norma' ized
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(3 Identify novel transcripts

3. Identify Novel Transcripts and Splicing Variants
RNA-seq is not limited to known genes — it can detect:
*Novel transcripts
*Alternative splicing events
*Gene fusions
*Non-coding RNAs
This helps in understanding transcriptome complexity and
gene regulation.

Gene

[—>Exon Exon Exon Exon
Intron Intron Intron
. —
DNA
Exon Exon Exon Exon
Intron Intron Intron
o= - N |
RNA  I5yTr 3'UTR
\ |
mRNA

—
5 UTRl l-3 UTR




(3 Identify novel transcripts e

3.1. Identify novel IncRNA

No. of exon-exon

Novel transcript TCONS_00228268 " iunction reads

d  RefSeq Oocyte : 613
59% Zygote . ; : 1,599

2-cell - & Z] - 5,210

acell| SR A ~ 15109

8-cell L _ 2 3,407

U"QZE,’EBC’ Morula L B E 26

EPI - 0

o PE - 0

IncRNA TE - 0

Ensembl 5.8%

20.3% 14,392 bp

Pie chart of the percentage of reads aligned
to different classes of genes.

92 bp,92 bp

Y
o
=
-
Y
o
=]
N

Coverage plots of RNA-Seq reads of a novel IncRNA during
preimplantation development.
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3.2. Novel splicing variants

d No. of exon-exon junction reads
60 0 50 100 150
NM_016476 e —u—gm i —
41 3 19
- - - - — ’A\
NM_001002244 el < .- Y NS —
- - S~
NM_001002245 === —a E—
145
NM_001002246 wsf——u—a8 B — ANAPC11
60
- - ~—
NM_001002247 ~ S —
42
(A.\n
NM_001002248 mimk— = gu —
8
NM_001002249 | |mewi—m——m P —

Exon-exon junction plots of all of the seven transcript variants of
ANAPC11 in an individual hESC.



3.3. Gene fusion

ETV6-RUNX1 fusion protein is expressed in &

25% of childhood B-lineage ALL cases and is
associated with favorable prognosis
following conventional therapeutic
strategies

Identify novel transcripts

ETVG 12p13

RUNX1 21q22

wt e ]
) S | v T Illl o ey
12 M5 67 [} !
.:-”% C——’—
- -
ETV6 12p13 RUNX1 21q22 RUNX1 21922
—mn“—r* ......... ||1||1|l‘, ..... B
" RUNX1 21q22 ETVE 12p13 RUNX1 21q2 ’
CEE WL R N I ~ 11 - ™ csssnhoees ™
i (RN ——— e p— i (1] i

Acute lymphocytic leukemia (ALL) is a type
of cancer of the blood and bone marrow

ETV6 12p13

i
Nt <

RUNX1 21q22

RUNX1 21q22 ETV6 12013

“

BINININ




I (4 Identify genetic mutations e

4. Identify genetic mutations — I

map RNA-seq reads to the reference genome
and across splice junctions

filter duplicate reads

call and filter variants

| require variant call quality Q > 20
v

v

I
| remove mismatches at 5' read ends '
I remove sites in repeats |

Genotyping Transcriptomics K|
Whole genome sequencing or RNA-seq or expression microarray ____filter spurious sites
genetic variant microarray e ~ | filter intronic sites within 4 bp of splice junctions |
s Aa ) | : !
ATCTGTCGAA £ P . remove sites in homopolymer runs of =5 bp |
ATCTGTC|GAA | rsin .
BLAT reads with mismatch against reference |
ATCTGTC|GAA = = I genome to ensure unique mapping
ATCTGTC|TIAA ——— 1 N e T R i —* ——————
4 T_C T G TCDAA T, S5 filter known RNA-editing sites
\_ Genetic variant G/T ) \ J/

RNA-seq variants
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4. ldentify genetic mutations

Roles of RNA Editing

RNA editing is a post-transcriptional process

where the nucleotide sequence of an RNA Tr%@gﬁm
molecule is altered after it has been transcribed
from DNA, without changing the underlying
DNA sequence.

This process can change the coding potential,
splicing, stability, or localization of the RNA,
and therefore affect the protein it encodes — pre-mRNA RNA RNA
or even whether it is translated at all. Raacing D eadaren Hledjcaton
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4. Identify genetic mutations
Roles of RNA Editing

Main Types of RNA Editing (in humans): T,?,,@ﬁf}on Stﬁ,gﬁ,,e

1. A-to-I editing (Adenosine to Inosine)

*Most common type in humans

*Catalyzed by ADAR enzymes (Adenosine Deaminases
Acting on RNA)

*Inosine is read as guanosine (G) by ribosomes and
sequencing machinery

Common in brain tissue, affecting neurotransmission -
related genes

2. C-to-U editing (Cytidine to Uridine)

*Catalyzed by APOBEC family enzymes

*Famous example: APOB mRNA, where editing produces a
stop codon, altering lipid metabolism

pre-mRNA RNA RNA
Splicing Degradation Replication
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4. ldentify genetic mutations

ARTICLE

OPEN
A general approach for detecting expressed
mutations in AML cells using single cell
RNA-sequencing

There are amendments to this paper

Allegra A. Petti 1'2'7, Stephen R. Williams3'7, Christopher A. Miller1'2, lan T. Fiddes3, Sridhar N. Srivatsan1,
David Y. Chen#, Catrina C. Fronick?, Robert S. Fulton?, Deanna M. Church® > & Timothy J. Ley'%€

Library . Data .
. Sequencing . Integration
preparation processing
T 1
— I 1 I "
Cryopreserved Single cell ~20,000 cells Barcglcli?en rreozgz sin Mutant cell
cells from GEMs > ~3 billion reads Trans o F{ countin 9 identification
AML patients ® L P 9, |
@
@ ®
¥ @
50
1
WGS -
~45x coverage
& Align reads % o]
variant calling -
Bulk A -
RNA-Seq
I — |

Subclonal mutations

.
LI |
Qoo
2
.
.
e,
.
oo,
H

L4 -
.
s
e~
e

.
e
o."
-
.0
]
St
o.‘
o
-
...

@ GATA2 R361C
® TIMM17B L122fs

VIM




I (9 Allele specific gene expression [

5. Allele specific gene expression Q
R Q Q
S 2 S <
RN © ) )
&L & &

SNP site

Reference _— --—A—-—I . FI]:}"

Paternal

Maternal

Offspring

RNA-seq reads
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5. Allele specific gene expression

Paternal X x x Maternal X

Allele specific expression /\
ACTGGCATTGAGCAATTCCTAGGGACC Paternal allele

ACTGGCATTGAGCAATTCCTAGGGACC

ACTGGCATTGAGCAATTCCTAGGGACC

ACTGGCATTGAGCAATTCCTAGGGACC

ACTGGCATTGAGCATTTCCTAGGGACC Maternal allele

ACTGGCATTGAGCATTTCCTAGGGACC

ACTGGCATTGAGCATTTCCTAGGGACC

ACTGGCATTGAGCATTTCCTAGGGACC l Random X l

inactivation

Bi-allelic

ACTGGCATTGAGCAATTCCTAGGGACC Paternal allele

ACTGGCATTGAGCAATTCCTAGGGACC
ACTGGCATTGAGCAATTCCTAGGGACC
ACTGGCATTGAGCAATTCCTAGGGACC

ACTGGCATTGAGCAATTCCTAGGGACC
ACTGGCATTGAGCAATTCCTAGGGACC
ACTGGCATTGAGCATTTCCTAGGGACC Maternal allele

Allelic imbalance

ACTGGCATTGAGCATTTCCTAGGGACC M ate?rnall X . Pate_rna! X
Inactivation Inactivation
(Paternal X (Maternal X

expressed) expressed)
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5. Allele specific gene expression

A Genetic mechanism of imprinting evolution

Genomic imprinting is an epigenetic Matemally-inherited allele
phenomenon where certain genes are expressed Paternally-inherited allele
in a parent-of-origin-specific manner. This means
that the expression of an imprinted gene =
depends on whether it is inherited from the - —

mother or the father. S R——

DNA methylation of transposon ‘

Maternally-inherited allele B i

Paternally-inherited allele SOOI

Biallelic expression

I

Imprinted expression
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Predictive biomarkers in anti-PD-1/PD-L1 immunotherapy
l

¥ ¥ ¥ ¥ ¥ Y
) i High io Abmormal g,y
6. Support Biomarker and Drug Target Discovery DL ] IR T G SR et [paokeci expression
. . . . d TILs 0 \
Differentially expressed genes or unique expression B e e e
signatures identified through RNA-seq can serve as \
Inhibiting NSCLC by anti-PD-1/PD-L1 immunotherapy

potential biomarkers, therapeutic targets, or indicators of
drug response/resistance.

Anti-PD-L1 NSCLC cells decreased

Anti-PD-1

X _

Challenge for anti-PD-1/PD-L1 treatment in advanced NSCLC
P _ |

\ Y Lack of *ﬂ' : Y

: of effective : %

gl High frequency  and accurate et

heterogeneous of Lo e ‘anti-PD-1/PD-L1

PD-L1 expression therapy treatment

PD-1 i@ TCR = Peptide @ Anti-PD-1 S>=—

PD-L1/2 Blw=  NHC 8 NSCLC cell Bl  Anti-PD-L1 3=
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scRNA-seq

ScRNA-seq (single-cell RNA-seq)

A single cell:
10-20 um;

~6pg gDNA; ~20pg total RNA (80-85% are rRNA)

— Population 1

— Population 2

) — Population 3

—— Population 4

\seﬁ * avrerage

— expression

T SR a(eefsl TIT 2 =52 52 55
/il "J’qe\{s‘—‘ﬁ “r T2 - HE
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SCRNA-seq (single-cell RNA-seq)
1. Single cell RNA-seq techniques (Tang protocol, Smart-seq2, Drop-seq, 10x genomimcs)
2. Data analyses (Seurat)

3. Application of scRNA-seq (Embryonic development, Cancer, Immune, Aging)




Cell lysis

cDNA
synthesis

Primer
removal

Poly(A)
tailing

Second-strand
cDNA
synthesis

PCR
amplification

cDNA
shearing

Adaptor
ligation

Library
amplification

1.1 Tang protocol

@ Single cell

I 01 scRNA-seq techniques

1. Amplify 5pg RNA to 1ug cDNA
L %\R 2. Full length of cDNA
Free primers 3. Followed by DNA library preparation
— = EiEie — . . . —
UP1 4. Individual single cell picking and amplification
—— - T 5. Low throughput
—> AAAAA = TITTT
— 2 TTTTT AAAAA
— AAAAA I'TTTT UP1
—Z_ SOLDPiandP2 —=_ ’ h)y-
— - adaptors = ‘ ' “’/7/ S
s o
il
P1 : i
- P2

Fuchou Tang et al., Nature Methods, 2009
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1.2 SMART-seq

Cell lysis (Steps 1-8)

!

Poly(A)* RNA
W W W W W AAAAAAAAAA

Oligo(dT) primer%

Reverse transcription
and terminal fransferase (Steps 9-11)

LNA-containing TSO
] (GrG+0 v A S AAAAAAAAAA

-t =
Template switching

by reverse franscriptase (Steps 9-11)

ISPCR primers v
| —
[ CCC T ]
| e |
ISPCR primers

PCR preamplification of cDNA (Steps 12—14)
W PCR cleanup (Steps 15-26)

GGG |
ccc TS| 1

GGG |
ccC o]

l Tagmentation (Tn5) (Steps 28-31)

Lot o o o

GGG |
ccc TH[ ]

Gap repair, enrichment PCR
i o and PCR purification (Steps 32-36)
PS5 primer i5 index

I ]

| — ]

===  EE=
N
i7 index P7 primer

Sequencing (Steps 37—41)
I |} [
—» —» 4— Read2seq

Bindexseq Read1seq Sequencing-ready fragment ——Jp- i7 index seq

1.  Full length of cDNA
2. Individual single cell picking and amplification

3. Low throughput

Simone Picelli et al., Nature Protocols, 2014
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1.3 DROP-seq

1. High throughput
2. 3 prime of cDNA

Drop-seq single cell analysis

Cells 3. Low cost
©
Distinctly
barcoded
beads %

e S — €

@

A

Yo

-
*

* K

1000s of DNA-barcoded single-cell transcriptomes

Y - © -F

Macosko et al., Cell, 2015
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1.3 DROP-seq
A Complex tissue Cell isolation Cell suspension STAMPs
~ , & =
e\ ', C (L:\}
NS @

Suspend in droplets with
beads (microparticles)

Use Drop-Seq to analyze the
BNA of each individual cell

B Barcoded primer bead C Synthesis of cell barcode (12 bases)

Round 1 Round? Sythesis
ARP — g AN o0
—r-G * — ~— G o — 8=t
T m_/"
h';".i'iu‘e ba?cetlzlde o 0 4 16 16,777,216

Single-cell transcriptomes
attached to microparticles

Number of unique barcodes in pool

Unique Molecular Identifier (UMI)

RNA-seq library with 10,000
single-cell transcriptomes

D Synthesis of UMI (8 bases)

8 rounds
oo"' Ag * of synthesis

e Millions of the same cell
barcode per bead

e 48 different molecular
barcodes (UMIs) per bead

Macosko et al.,

Cell, 2015
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1.4 10x Genomics

10x Genomics RNA sequencing (10x RNA-Seq)
Is a high-throughput single-cell transcriptomics
method that allows for the profiling of thousands to

millions of individual cells in a single experiment.

10x RNA-seq is one of the most widely
used methods for single-cell RNA
analysis, enabling breakthroughs in cell
biology, disease research, and precision
medicine.

10)\GENOMICS

10X scRNA-seq

C D
\
‘..'...'
e
y.:. ‘; . . . . Q .‘ . ‘_)
...... ( o
\® |
/ 0
10x Barcoded Cells Oil
Gel Beads Enzyme

3’ i ) P

C J $

Collect RT
| LAA L J

Pool | romm—

Remove Oil ‘I [
eoee \
.

LA

e >
LA J
.’J ‘I "

lone
\von ]
| o0 L) \
o0/ soef \
o . \ f
\'e/ \eo/ \
o [ \ |
O

Single Cell 10x Barcoded 10x Barcoded
GEMs cDNA cDNA
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1.4 10x Genomics

1OI\GEN0MICS
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Method Cell Capture 5?{;}222%2 Throughput Cost per Cell |JAdvantages Limitations
Manual (micropipette or - First scRNA-seq method - Extremely low throughput
Tang Protocol FACS) Yes Low (~100s) High - Captures full-length transcripts |- Labor-intensive
- High cost
- High sensitivity - Low throughput
Smart-seq2 Plate-based (FACS) Yes Low (~100s) High - Detects full-length mRNA - Higher cost
- Suitable for low-input - Batch variability
- High throughput - 3'-end only
Drop-seq Droplet-based X No (3’ only) High (~10,000s) Low - Low cost - Lower transcript coverage
- Incorporates UMIs
- Highly standardized - Expensive reagents
10x Genomics Droplet-based X No (3" or5) Very High (>100,000s) Medium-High |- Commercial support - 3'/5" only

- Supports multi-omics

- Black-box workflow
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SCRNA-seq (single-cell RNA-seq)
1. Single cell RNA-seq techniques (Tang protocol, Smart-seq2, Drop-seq, 10x genomimcs)
2. Data analyses (Seurat)

3. Application of scRNA-seq (Embryonic development, Cancer, Immune, Aging)




I 02 scRNA-seq Data analyses I

https://satijalab.org/seurat/
Contents

Setup the Seurat Object

Standard pre-processing workflow

Seurat m Install Get started Vignettes ~ Extensions FAQ News Reference Archive

Normalizing the data

Identification of highly variable
features (feature selection)

Scaling the data

Perform linear dimensional
reduction

Determine the ‘dimensionality’ of

Seurat v5 the dataset

We are excited to release Seurat v5! To install, please follow the instructions in our install page. This update brings the following

new features and functionality: Cluster the cells

. Integrative.multimogal analysis: The cellula.r Fltansc'riptome is j.ust o‘ne aspect of ce!lular identity, a'nd recent technologies Run non-linear dimensional

enable routine profiling of chromatin accessibility, histone modifications, and protein levels from single cells. In Seurat v5, we .
introduce ‘bridge integration) a statistical method to integrate experiments measuring different modalities (i.e. separate reduction (U MA P/tS N E)
scRNA-seq and scATAC-seq datasets), using a separate multiomic dataset as a molecular ‘bridge’. For example, we L . .
demonstrate how to map scATAC-seq datasets onto scRNA-seq datasets, to assist users in interpreting and annotating data Find Ing differential Iy E‘XDFESSEd
SO features (cluster biomarkers)

Assigning cell type identity to
clusters
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Contents

[ Setup the Seurat Object ]

Standard pre-processing workflow

Normalizing the data

library(dplyr)
Identification of highly variable library(Seurat)
features (feature selection) library(patchwork)
Scaling the data # Load the PBMC dataset

pbmc.data <- Readl@X(data.dir = "/brahms/mollag/practice/filtered_gene_bc_matrices/hg19/")

# Initialize the Seurat object with the raw (non-normalized data).

pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k"™, min.cells = 3, min.features = 2
00)

pbmc

Perform linear dimensional
reduction

Determine the ‘dimensionality’ of
the dataset

Cluster the cells ## An object of class Seurat

Run non-linear dimensional ## 13714 features across 2700 samples within 1 assay

reduction (UMAP/tSNE) ## Active assay: RNA (13714 features, @ variable features)
## 1 layer present: counts

Finding differentially expressed

features (cluster biomarkers)

Assigning cell type identity to
clusters

https://satijalab.org/seurat/
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Contents
# Visualize QC metrics as a violin plot
Setup the Seurat Object VinPlot(pbmec, features = c("nFeature_RNA", '"nCount_RNA", "percent.mt"), ncol = 3)
[ Standard pre-processing workflow ] nFeature_RNA nCount_RNA percent.mt
Normalizing the data
15000
Identification of highly variable 3000 20

features (feature selection)

Scaling the data 4 ) o : 15

100004
Perform linear dimensional 2000
reduction

10

Determine the ‘dimensionality’ of
the dataset

50001
1000 A

Cluster the cells

Run non-linear dimensional

reduction (UMAP/tSNE) - 01 : ,
ol o &
Finding differentially expressed QT’: " f o Ql‘j "
enti entl enti
features (cluster biomarkers) Y Y Y
Assigning cell type identity to
clusters pbmc <- subset(pbmc, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)

https://satijalab.org/seurat/
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Contents After removing unwanted cells from the dataset, the next
Setup the Seurat Object step is to normalize the data. By default, we employ a
Standard pre-processing workflow global-scaling normalization method ”LogNormaIize” that

[ Normalizing the data ] normalizes the feature expression measurements for each
Identification of highly variable cell by the total expression, multiplies this by a scale factor
features (feature selection) (10,000 by default), and log-transforms the result.

Scaling the data

Perform linear dimensional

reduction . . . .
pbmc <— NormalizeData(pbmc, normalization.method = "LogNormalize", scale.factor = 10000)

Determine the ‘dimensionality’ of
the dataset

Cluster the cells

While this method of normalization is standard and widely

Run non-linear dimensional

reduction (UMAP/ASNE) used in sCRNA-seq analysis, glpbal—scallng relies on an
Finding differentially expressed assumption that each cell originally contains the same
features (cluster biomarkers) number Of RNA molecules.

Assigning cell type identity to

clusters

https://satijalab.org/seurat/
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Contents
Setup the Seurat Object pbmc <- FindVariableFeatures(pbmc, selection.method = "vst", nfeatures = 2000)
Standard pre-processing workflow # Identify the 10 most highly variable genes

. topl0 <- head(VariableFeatures(pbmc), 10)
Normalizing the data

- - - - # plot variable features with and without labels
Identification of highly variable plotl <- VariableFeaturePlot(pbmc)

features (feature selection) plot2 <- LabelPoints(plot = plotl, points = topl@, repel = TRUE)
plotl + plot2

caling the data

Perform linear dimensional . .PPBP
reduction
. (1 . s 2 5 S100A9
Determine the ‘dimensionality’ of o - o quLS\I..YZ
the dataset G " & i 8 A
% . % « GNLY
Cluster the cells z : = BN
561 o5 fon * Non-variable count: 11714 @ 61  GNG11S100A8 . Non.variable count: 11714
. . . N % ; ; N 5 ; ‘
Run non_llneardlmen5|0na| _é Variable count: 2000 _E Variable count: 2000
reduction (UMAP/tSNE) § 1'3“
. . . S 8 3-
Finding differentially expressed ) n
features (cluster biomarkers)
Assigning cell type identity to 0-
clusters 1le-02 1e+00le+02 le-02 le+00le+02
Average Expression Average Expression

https://satijalab.org/seurat/
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Contents

Setup the Seurat Object

Shifts the expression of each gene, so that the mean expression across cells is 0

Scales the expression of each gene, so that the variance across cells is 1

Normalizing the data o This step gives equal weight in downstream analyses, so that highly-expressed genes do not dominate
The results of this are stored in pbmc[["RNA"]]$scale.data

By default, only variable features are scaled.

You can specify the features argument to scale additional features

Standard pre-processing workflow

Identification of highly variable
features (feature selection)

[ Scaling the data ]

Perform linear dimensional
reduction

Determine the ‘dimensionality’ of

the dataset all.genes <— rownames(pbmc)

pbmc <- ScaleData(pbmc, features = all.genes)
Cluster the cells

Run non-linear dimensional
reduction (UMAP/tSNE)

Finding differentially expressed
features (cluster biomarkers)

Assigning cell type identity to
clusters

https://satijalab.org/seurat/
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Contents

Setup the Seurat Object

. pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc))
Standard pre-processing workflow

Normalizing the data Seurat provides several useful ways of visualizing both cells and features that define the PCA, including VizDimReduction() ,
DimPlot() ,and DimHeatmap()

Identification of highly variable

features (featureselection) # Examine and visualize PCA results a few different ways

print(pbmc[["pca"]], dims = 1:5, nfeatures = 5)
Scaling the data

" " " ## PC_ 1
Perform linear dimensional ## Positive: CST3, TYROBP, LST1, AIF1, FTL
reduction ## Negative: MALAT1, LTB, IL32, IL7R, CD2
. - . . ## PC_ 2

Determine the ‘dimensionality’ of ## Positive: CD79A, MS4A1, TCL1A, HLA-DQA1, HLA-DQB1

the dataset ## Negative: NKG7, PRF1, CST7, GZMB, GZMA
## PC_ 3

Cluster the cells ## Positive: HLA-DQA1, CD79A, CD79B, HLA-DQB1, HLA-DPB1
## Negative: PPBP, PF4, SDPR, SPARC, GNG11

Run non-linear dimensional ## PC_ 4

reduction (UMAP/tSNE) ## Positive: HLA-DQA1l, CD79B, CD79A, MS4A1, HLA-DQB1
## Negative: VIM, IL7R, S100A6, IL32, S100A8

Finding differentially expressed ## PC_ 5

## Positive: GZMB, NKG7, S100A8, FGFBP2, GNLY

features (cluster biomarkers) ## Negative: LTB, IL7R, CKB, VIM, MS4A7

Assigning cell type identity to
clusters

https://satijalab.org/seurat/
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Contents

DimPlot(pbmc, reduction = "pca") + NolLegend()
Setup the Seurat Object
Standard pre-processing workflow Lo
Normalizing the data - :., ;t:;‘
Identification of highly variable X :-:.!3:,_-(";{:::.:-_:?'.' .
features (feature selection) ST L
Scaling the data .

[ Perform linear dimensional ]

reduction

Determine the ‘dimensionality’ of
the dataset

Cluster the cells

Run non-linear dimensional
reduction (UMAP/tSNE) -101

Finding differentially expressed A
features (cluster biomarkers) “ .

Assigning cell type identity to
clusters

PC_1

https://satijalab.org/seurat/
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Contents

. DimHeatma bmc, dims = 1, cells = 500, balanced = TRUE
Setup the Seurat Object pip )

Standard pre-processing workflow PC 1
Normalizing the data

MALAT1
LTB
IL32
ILVR

Identification of highly variable

featiires {featilre selection) ‘III|I| J ’I I||II "II’ ||IIII ||I ‘II II| “ Il ‘ Cg’,ﬁ
Sca"ngth_Edata. , i ”) wili |I e I\Il|fllllwh’llllll 1
Perform linear dimensional I I‘ I \|I ” ’III LIl § Illh II ”J' ||II||| y;l;#\
reduction |l I”II‘ “ ’ ! |, Il/ III’ F;:IZS
II I .rll” "| IHII‘ IIIIII|I .II I’” Qp3

Determine the ‘dimensionality’ of

H| SELL

‘l T Hwnw.mm' i

WIII

Cluster the cells | | 1 | LGALS1
II‘ \ CFD
Run non-linear dimensional ' P
reduction (UMAP/tSNE) " } , Eém“g
| LYz

Finding differentially expressed | l | | FTH1
. Wil FTL

features (cluster biomarkers) 1 it w 1 H| ‘I AIF1
LST1
Assigning cell type identity to e IHIIII il st

clusters

https://satijalab.org/seurat/
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Contents To overcome the extensive technical noise in any single feature for scRNA-seq data, Seurat clusters cells based on their PCA

Setup the Seurat Object scores, with each PC essentially representing a ‘metafeature’ that combines information across a correlated feature set. The top
Standard ) f principal components therefore represent a robust compression of the dataset. However, how many components should we
tandard pre-processing workflow choose to include? 10? 20? 100?

Normalizing the data

d if . f highl iabl An alternative heuristic method generates an ‘Elbow plot”: a ranking of principle components based on the percentage of variance
I entification o ighly variable explained by each one ( ElbowPlot () function). In this example, we can observe an ‘elbow’ around PC9-10, suggesting that the

features (featu re selectio n) majority of true signal is captured in the first 10 PCs.

ElbowPlot (pbmc)

Scaling the data

Perform linear dimensional .
reduction

[ Determine the ‘dimensionality’ of ]

the dataset

Cluster the cells

Run non-linear dimensional
reduction (UMAP/tSNE)

Standard Deviation

Finding differentially expressed
features (cluster biomarkers) 5
Assigning cell type identity to .

clusters 2] .

https://satijalab.org/seurat/
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This step is performed using the FindNeighbors() function,
and takes as input the previously defined dimensionality of
the dataset (first 10 PCs).

Contents

Setup the Seurat Object

Standard pre-processing workflow

. bmc <- FindNeighbors(pbmc, dims = 1:10)
Normalizing the data P
g pbmc <— FindClusters(pbmc, resolution = @0.5)

Identification of highly variable

features (feature selection) ## Modularity Optimizer version 1.3.@0 by Ludo Waltman and Nees Jan van Eck
Scaling the data ##
## Number of nodes: 2638
Perform linear dimensional ## Number of edges: 95965
reduction ##

## Running Louvain algorithm...

Determine the ‘dimensionality’ of ## Maximum modularity in 10 random starts: 0.8723
the dataset ## Number of communities: 9
[ Cluster the cells ] ## Elapsed time: @ seconds
Run non-linear dimensional ,
. # Look at cluster IDs of the first 5 cells
reduction (UMAP/tSNE) head(Idents(pbmc), 5)

Finding differentially expressed

features (cluster biomarkers) ## AAACATACAACCAC-1 AAACATTGAGCTAC-1 AAACATTGATCAGC-1 AAACCGTGCTTCCG-1

.. . . ## 2 3 2 1
Assigning cell type identity to
gning yp Y ## AAACCGTGTATGCG-1

clusters # 6
## Llevels: 812 345678

https://satijalab.org/seurat/


https://satijalab.org/seurat/reference/findneighbors
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Contents pbmc <- RunUMAP(pbmc, dims = 1:10)
Setup the Seurat Object . . ,
# note that you can set "label = TRUE' or use the LabelClusters function to help label
Standard pre-processing workflow # individual clusters
Normalizing the data DimPlot(pbmc, reduction = "umap")

Identification of highly variable
features (feature selection)

Scaling the data d 'ﬁgi‘{:f"'

Perform linear dimensional 1

reduction

Determine the ‘dimensionality’ of
the dataset >

Cluster the cells

umap_2
o090 000O0OCGOSTS
ONOWUV B WNKFEO

Run non-linear dimensional
reduction (UMAP/tSNE)

Finding differentially expressed
features (cluster biomarkers)
Assigning cell type identity to
clusters

https://satijalab.org/seurat/
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Contents
. # find all markers of cluster 2
SetUpthe Seurat Obje(:t cluster2.markers <— FindMarkers(pbmc, ident.1l = 2)
. head(cluster2.markers, n = 5)

Standard pre-processing workflow

Normalizing the data i p_val avg_log2FC pct.1 pct.2 p_val_adj
## IL32 2.593535e-91 1.3221171 0.949 0.466 3.556774e-87

Identification of highly variable ## LTB 7.994465e-87 1.3450377 0.981 0.644 1.096361e-82

features (feature selectlon) ## IL7R 1.130870e-66 1.4256944 0.748 0.327 1.550876e-62

B
1
## CD3D 3.922451e-70 1.0562099 0.922 0.433 5.379250e-66
1
## LDHB 4.082189e-65 0.9765875 0.953 0.614 5.598314e-61

Scaling the data

Perform linear dimensional # find all markers distinguishing cluster 5 from clusters @ and 3
reduction cluster5.markers <— FindMarkers(pbmc, ident.1l = 5, ident.2 = c(@, 3))
head(cluster5.markers, n = 5)

Determine the ‘dimensionality’ of

the dataset #i#t p_val avg_Llog2FC pct.1l pct.2 p_val_adj
## FCGR3A 2.150929e-209 6.832372 0.975 0.039 2.949784e-205
Cluster the cells ## IFITM3 6.103366e-199  6.181000 0.975 0.048 8.370156e-195
## CFD 8.891428e-198 6.052575 0.938 0.037 1.219370e-193
Run non-linear dimensional ## CD68 2.374425e-194 5.493138 0.926 0.035 3.256286e-190
. ## RP11-290F20.3 9.308287e-191 6.335402 0.840 0.016 1.276538e-186
reduction (UMAP/tSNE)
Finding differentially expressed # find markers for every cluster compared to all remaining cells, report only the positive

# ones

pbmc.markers <— FindAllMarkers(pbmc, only.pos = TRUE)
. . . . pbmc.markers %>%

Assigning cell type identity to group_by(cluster) %%

clusters dplyr::filter(avg_log2FC > 1)

features (cluster biomarkers)

https://satijalab.org/seurat/
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Contents

Setup the Seurat Object

We include several tools for visualizing marker expression. V1nPlot() (shows expression probability distributions across
Standard pre-processing workflow clusters),and FeaturePlot() (visualizes feature expression on atSNE or PCA plot) are our most commonly used visualizations.
We also suggest exploring RidgePlot(), CellScatter() ,and DotPlot() asadditional methods to view your dataset.

Normalizing the data
VinPlot(pbmc, features = c("MS4A1", '"CD79A"))

Identification of highly variable
features (feature selection) MS4Al CD79A

Scaling the data

Perform linear dimensional
reduction

Determine the ‘dimensionality’ of
the dataset

Cluster the cells

Expression Level
N
Expression Level

Run non-linear dimensional
reduction (UMAP/tSNE)

Finding differentially expressed
features (cluster biomarkers)

Assigning cell type identity to Identity Identity
clusters

https://satijalab.org/seurat/
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Contents

Setup the Seurat Object

) FeaturePlot(pbmc, features = c("MS4A1", "GNLY", "CD3E", "CD14", "FCER1A", "FCGR3A", "LYZ", "PPBP",
Standard pre-processing workflow

"CD8A™))
Normalizing the data
Identification of highly variable MS4Al GNLY CD3E
features (feature selection) 10] & 104 . 10 “°
. o~ 4 o~ o 4
Scaling the data P s 3 o' 51 4 o 2 29 3
g o0 2 & o % e ol % 2
Perform linear dimensional § 1 § " 2 § 2 . 1
reduction =1 0 > 0 > ﬁ’f 0
) ) ) ) 10— [0l -0l
Determine the ‘dimensionality’ of -5 0 5 10 -5 0 5 10 -5 0 5 10
the dataset umap_1 umap_1 umap_1
CDh14 FCER1A FCGR3A
Cluster the cells
10 101 10

Run non-linear dimensional
reduction (UMAP/tSNE)

umap_2
o wu
o N oW

umap_2
(9]
H
O, N WA

umap_2
v
8
5id
|
o N W B

0 A 0
Finding differentially expressed
. -5 1 -5 1 -5 - +
features (cluster biomarkers) o
-10 T T T T -10 T T T T -10 T T T T
Assigning cell type identity to 5 0 5 10 5 0 5 10 5 0 5 10
umap 1 umap_1 umap_1

clusters

https://satijalab.org/seurat/
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pbmc.markers %>%
group_by(cluster) %%

Contents dplyr::filter(avg_log2FC > 1) %>%
_ slice_head(n = 10@) %>%
Setup the Seurat Object ungroup() -> topl®

. DoHeat bmc, feat = top1@ NoL d
Standard pre-processing workflow b LRI E) AT opl@sgene) + Nolegend()

Normalizing the data

Identiﬁcation Of highly Variable \IIH\HHIIII\HI L] H‘ \H‘ ALY HI Il IHI {1 RN [ LR TR I\‘\ gL
... IMIIHIHI\‘I HIH‘ I\“|"|II I‘HH IIII \IH Hl HIII‘I I I\II | HH ‘ IH |

features (feature SeleCtlon) AL IR I\I il \Hl il ”\‘ Ilhl \H\‘ Hl I { !

Scaling the data | WWIW.MMW M\

”I‘IH‘H:IIHHII\ |\ :III‘\\I‘ I

0 i [
Perform linear dimensional 1 ”\”l”\"l‘ll‘ﬂﬂfl \"”" '\'"\Wﬂ‘u'i i
reduction ‘. “‘II":‘ :‘\I\:':\‘\:HH\I‘I\"‘!I\' ”‘f[””‘" Hh‘:“ ‘:I"I l\I:”\ !”Hh‘lwlwlwt” T:I‘: ‘"HIU\F"H:“H “ bl
Determine the ‘dimensionality’ of
the dataset
Cluster the cells i “ il | L J‘pr
Run non-linear dimensional PR SR ¢ | l‘ s g b it'h.l‘.ﬁm |
reduction (UMAP/tSN E) ) 4 i I‘"\I\'\IH‘ hH‘ 1 \‘HHH‘I it ']
i IH\ \‘IIIHIII I‘III‘\H\H i} HIIHHHH
Flndlng diﬂ:erentia”y expr-essed :‘:.; I \uu’ 1] ‘hunu 10000 HW T I
features (cluster biomarkers) ] ‘ '1"”:III|'|"I'| ‘” f
! H\ L] Ill

Assigning cell type identity to
clusters 7 RN

https://satijalab.org/seurat/
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Cluster ID Markers Cell Type
Contents 0 IL7R, CCR7 Naive CD4+ T
Setup the Seurat Object 1 CD14,LYZ CD14+ Mono
Standard pre-processing workflow ) IL7R, S100A4 Memory CD4+
Normalizing the data 3 MS4A1 B
Identification ofhlghly\farlable 4 CD8A cDa+T
features (feature selection)
. 5 FCGR3A,MS4A7 FCGR3A+ Mono
Scaling the data
. . . 6 GNLY, NKG7 NK
Perform linear dimensional
reduction 7 FCER1A,CST3  DC "
) 27 3
Determine the ‘dimensionality’ of 8 PPBP Platelet AR
the dataset ’
FCGR%ﬁMpﬂo
Cluster the cells 1:«*‘ :
5 7 ..}:,';'" '-':!1::. . ..
Run non-linear dimensional ~ _PC *’%‘w LR iy
! N R
reduction (UMAP/tSNE) g Vet
- . ) Platelet
Finding differentially expressed Z 07 aree
features (cluster biomarkers)
Assigning cell type identity to 5
clusters
-5 0 5 10

https://satijalab.org/seurat/ umap_1
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SCRNA-seq (single-cell RNA-seq)
1. Single cell RNA-seq techniques (Tang protocol, Smart-seq2, Drop-seq, 10x genomimcs)
2. Data analyses (Seurat)

3. Application of scRNA-seq (Embryonic development, Viral infection, Immune, Aging)
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3.1 Embryonic development

Article

Asingle-cell time-lapse of mouse prenatal
development fromgastrulatobirth

log,(cell no.)
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3.3 Intratumoral heterogeneity

Single-cell RNA-seq highlights intratumoral heterogeneity in
primary glioblastoma

Anoop P. Patel’234.1 Itay Tirosh3T, John J. Trombetta3, Alex K. Shalek3, Shawn M.
Gillespie?34, Hiroaki Wakimoto', Daniel P. Cahill', Brian V. Nahed', William T. Curry’,
Robert L. Martuza', David N. Louis?, Orit Rozenblatt-Rosen3, Mario L. SuvaZ3."¥, Aviv
Regev345."% and Bradley E. Bernstein2-34."%

Primary GBM

o 8@,
R 51 ég\\ Resection x'g Dissociation . % 2
e ) \ 2
< [ s ) —’ ’ 4 )
( <,r L1 L (,) T=0 ) 80 b
—s o=
Single cell
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Library ~ Rgg'l‘)o?, CD45
¢ R P ebris Depletion
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Patel et al., 2014, Science
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3.3 Intratumoral heterogeneity

Single-cell RNA-seq highlights intratumoral heterogeneity in
primary glioblastoma
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Gillespie?34, Hiroaki Wakimoto', Daniel P. Cahill', Brian V. Nahed', William T. Curry’,
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3.4 Immune
RESEARCH Tumors of various cancer types Single-cell RNA-seq and TCR-seq Integrated analyses
. Platform ! Data Expression characterizing
2lcancertypes 0 cgrsotTToToooo-o-- VTR om oo and TCR tracing
) Plate-based methods 1 Gene expression e
RESEARCH ARTICLE w 316 patients - :
397,810 T cells | @
>, ™ OOO 1
CANCER IMMUNOLOGY S ‘ > !
. S W || v Droplet- hods! T tor (TCR ' ot
Pan-cancer single-cell landscape ~ roplt st methots | T ool eceriy (0
infi i g ) ] & *.oo ! Y '
of tumor-infiltrating T cells HVORSE = & W
Differential usage of exhaustion paths Comparison across cancer types Immune-typing based
. 06 Frequencies of CD8" terminal exhausted T cells on T cell compositions
cr+r8£.c T(;;FP Interferons CTLIEX Tem N Tex! B Trmlo
stimulation %% ".%". PDCDl_.___.‘Q
% 3 . Trm
-y
S AW R,
B - % ’ «
Conserved  Preferential @ " Je17 ‘
in mctast ina ftew KIRs ¢ S % s
eS i N
cancer types cancer typ NK-like Q;'%&\O B\ @tg%:g 'b@c, oS & <¢=°Q eyloW 7o high

Liangtao Zheng et al., 2021, Science



I )3 Application of scRNAseq I

3.4 Immune

TCR and BCR are key components of adaptive immunity,
enabling T and B cells to recognize antigens. Their diversity
arises from V(D)J recombination, somatic hypermutation (BCR
only), and clonal selection. Below is a detailed comparison and

analysis framework. G ST callrecepioracn i Nl receaniic
; Domain(Fab)

Antigen
recognltlon domain /\‘ "\
, Light chain

Variable region _
(V/(D)/3)
c — Heavy chain

g8 Iga

onstant region(C) —

iy =

ITAM

L ) < 4 B cell receptor (BCR)
CO3 complex

(Figure 1) The structure of TCR/BCR

TCR is composed of a chain and § chain, or & chain and ¥ chain. Each TCR has variable region (V/D/J) and constant region (C).

Variable region has three complementarity determining region (CORs): COR1 and COR2 which recognize MHC, and COR3 which

recognizes and binds antigen. The TCR and CO3 molecules together form the TCR complex and generate the intracelivlar signals,
B8CR or immunoglobulin is composed of immunoglobulin-heavy chain (IgHC) and Immuncglobulindight chain (IglC). There are five

different isotypes for IgHC: IgA. IgD. IgE. IgG and IgM, while 1gLC is classilied into gL and IgK. Fab region on heavy and light chains

recognizes and binds antigen. Similar to TCR, BCR lorm the BCR complex with IgaB lor generating the intraceliular signals.
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3.4 Immune

RNA sequencing (RNA-seq) can profile T-cell receptor

(TCR) and B-cell receptor (BCR) repertoires, enabling insights
into adaptive immune responses in cancer, autoimmune
diseases, and infections.

a Chain B Chain
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3.4 Immune

Generation of T cell clones:
clonality

G: TCR 1n germ line configuration
A, B, C: rearranged TCRs with different specificities

O—O
TCR A 3

S—CZ= 0

AgFor
<

@@@v(}(}@'

Thymus Secondary
Stem cells ?l(lj}ll{mus Selection for Lymphoid
recombination  The T cells tissues. =
with good Ag-dependent
TCR expansion of

clones.
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3.4 Immune

Cell
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SCRNA-seq (single-cell RNA-seq)
1. Single cell RNA-seq techniques (Tang protocol, Smart-seq2, Drop-seq, 10x genomimcs)
2. Data analyses (Seurat)

3. Application of scRNA-seq (Embryonic development, Viral infection, Immune)
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