Software | Webserver | Standalone | Locations Predictable |
---|---|---|---|
[1] cello | http://cello.life.nctu.edu.tw/ | F | cytos, ER, extra, golgi, membr, mito, nucl, pero, plast, vacu |
[2] mPloc | http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/ | F | cytos, ER, extra, golgi, membr, mito, nucl, pero, plast, vacu |
[3] Predotar | http://urgi.versailles.inra.fr/predotar/predotar.html | F | ER, mito, plast, others |
[4] mitoProt | http://ihg2.helmholtz-muenchen.de/ihg/mitoprot.html | F | mito |
[5] MultiLoc | http://abi.inf.uni-tuebingen.de/Services/MultiLoc/ | T | cytos, ER, extra, golgi, membr, mito, nucl, pero, plast, vacu |
[6] TargetP | http://www.cbs.dtu.dk/services/TargetP/ | T | mito, plast, extra, others |
[7] Wolf PSORT | http://wolfpsort.org/ | T | cytos, ER, extra, golgi, membr, mito, nucl, pero, plast, vacu |
[8] subcellPredict | http://chemdata.shu.edu.cn/subcell/subcell4.jsp | F | cytos, mito, extra |
[9] iPsort | http://ipsort.hgc.jp | F | mito, plast |
[10] Yloc | http://abi.inf.uni-tuebingen.de/Services/YLoc/webloc.cgi | T | cytos, mito, plast, extra, nucl |
[11] PTS1 | http://mendel.imp.ac.at/mendeljsp/sat/pts1/PTS1predictor.jsp | F | pero |
1. Yu, C.S., C.J. Lin, and J.K. Hwang, Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci, 2004. 13(5): p. 1402-6.
2. Chou, K.C. and H.B. Shen, Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One, 2010. 5(6): p. e11335.
3. Small, I., et al., Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics, 2004. 4(6): p. 1581-90.
4. Claros, M.G. and P. Vincens, Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem, 1996. 241(3): p. 779-86.
5. Hoglund, A., et al., MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics, 2006. 22(10): p. 1158-65.
6. Emanuelsson, O., et al., Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol, 2000. 300(4): p. 1005-16.
7. Horton, P., et al., WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007. 35(Web Server issue): p. W585-7.
8. Niu, B., et al., Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins. Mol Divers, 2008. 12(1): p. 41-5.
9. Bannai, H., et al., Extensive feature detection of N-terminal protein sorting signals. Bioinformatics, 2002. 18(2): p. 298-305.
10. Briesemeister, S., J. Rahnenfuhrer, and O. Kohlbacher, YLoc--an interpretable web server for predicting subcellular localization. Nucleic Acids Res, 2010. 38(Web Server issue): p. W497-502.
11. Neuberger, G., et al., Motif refinement of the peroxisomal targeting signal 1 and evaluation of taxon-specific differences. J Mol Biol, 2003. 328(3): p. 567-79.
12. Tanz, S.K., et al., SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Res, 2013. 41(D1): p. D1185-91.
13. Sun, Q., et al., PPDB, the Plant Proteomics Database at Cornell. Nucleic Acids Res, 2009. 37(Database issue): p. D969-74.